Effect of Interfacial Drag Force on the Numerical
Stability of the Two-Fluid Model
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Summary

In order to enhance the stability limit of the I. C. E. (Implicit courant Eulerian) Method, the Stability
enhancing Two-step method (SETS) implemented in TRAC-PF! adds the stabilization step to the basic
step of the I C. E. method. The matrix size of the SETS method is smaller than that of ordinary
fully-implicit methods. However, the momentum stabilization steps enlarge the matrix size of the SETS

method as dimension increases.

In order to reduce the matrix size of the SETS method in multi-dimensional problems and to study the
effect of interfacial drag force on stability, the stability analysis of SETS method without momentum
stabilization steps (SETS-WM) is done here. One dimensional stability criterion is obtained by von
Neumann stability analysis. It is found that the interfacial drag force enlarges the stability limit
considerably. When SETS-WM is numerically tested, stability problems have not been encounted with
several numerical simulations with time step sizes restricted by the stability limit derived here.

1. Introduction

Lots of computer codes for the thermal
hydraulic safety analysis of nuclear power
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plants have been developed. In these codes
the time step size is determined on the basis
of numerical stability and accuracy.

In order to analyze the large break loss of
coolant accident, the I C. E. (Implicit
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Courant Eulerian) method was developed by
taking the sonic term implicitly and the
convective terms explicity. Therefore, the L
C. E. method has the material convective
limit which is large enough for such an acci-
dent to ensure accuracy.

However, the small break loss of coolant
accident having been emphasized after the T.
M. I ‘accident indicates that the material
convective limit of the I. C. E. method is ‘too
short to analyze such a mild and long acci-
dent. Therefore, the following efforts have
been dene to enhance numerical stability :

1. Fully-implicit method : by treating every
term implicitly, the unconditionallystable
numerical scheme can be obtained with the
large matrix size. Computation burden from
the large matrix size can be mitigated by use
of the large time step size. ATHENA (1] is
one of computer codes using this scheme.

2. SETS(Stability-emhancing Two-Step)
method : In order to make the smaller matrix
size than the fully implicit method and to use
the efficient numerical algorithm of the I C.
E. method, the stabilization steps of
convective terms are added to the basic step
of the . C. E. method. TRAC-PF1(2) and
RELAP5-MOD2(3) uses this scheme. As di-
mension increases, the size of matrix
increases due to momentum stabilization
steps. If the momentum stabilization steps are
removed from the SETS method, the
production of the small matrix size is pos-
sible.

Therefore, numerical stability analysis is
performed to the SETS method without mo-
mentum stabilization steps (SETS-WM). The
effect of the interfacial drag force on stability

is emphasized here.

2. Numerical Scheme

The SETS method takes two fractional steps
composed of basic and stabilization steps.

2.1 Difference Equations in the
Basic Step

The basic step use the conventional . C.
E. method. therefore, the finite difference
equations are the same as THERMIT(4).

- Mass conservation :
';7 [(dk P! - oy py )-"] +V, [(akpk " “'[”I] =rpt?
o)}
. Ene'rgy conservation :
}% [(akp,‘ék),’”‘ — (o Peey ),"] +V, [(u,‘ pkek)"V,""]
1

+P; [E et - et} V.<ar‘/:">] =ox'+ 08 @)

- Momentum conservation :

1 [-uq . ] n . 1 A+l
— et -+ VRV —V P 3
At k £ k k 0 i
+ fwk ‘-’:” + j‘ (V:'l—l-":jll) =3.
G Pr O Py
where

k=1 : vapor, k=3 : liquid.

A tilkde above a variable indicates that it is
the result of an intermediate step. An over
var is an average between its values at the
adjacent cell. The time discretization used in
the momentum conservation equation results
in linear expression relating each new time

phase velocity at a cell face to new time
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adjacent pressure. The newton-Rahpson
method

equations,

linearizes the set of nonlinear

and constructs a linear matrix
equation of pressure field. By solving the
matrix for pressure, the other variables can

be obtained.

2.3. Difference Equations in the
Stabilization Step

The convective terms is stabilized by
treating implicitly in the stabilizing step.

- Mass conservation :
i [(atpk)x’”l - (o py )."] +V, [(akpk )"”V/:”l] =T
(4)

- Energy conservation :

é [(utptek).“l - (akpkfk)."] +V, [(akpkek )Mlvf'l]

+ P, [—A]—’ [af”' - u:]+ v, (a['V;‘")] =08+ Q' (5

The above equations stabilize error growth

by the convective terms in the basic step.
3. Numerical Stability

It is well known that every variable has the
stability limit according to ‘he degree of
implicitness (5). For example, pressure in I
C. E. has no stability limit, but temperature
has the convective limit. [f a stabilization step
then the stability

limit is determined by the variable in the basic

of a variable is removed,

step. Therefore, if the momentum stabilization
steps are removed from the SETS method,
then the unstabilized momentum in the basic

step would result in the numerical instability

of the SETS method for a large time step
size.

In order to see clearly the effect of
interfacial drag force on the numerical
stability, the mass exchange rate and the wall
friction force are neglected. Also, energy
equations are dropped in stability analysis
because enthalpies in energy equations are
completely stabilized in the stabilizing step
and, in turn, energy equations have no effect
on stability.

Treating the coefficients as constants, let
us apply the von Neumann local linear
stability analysis, U: =" exp(ik &az), to the
mass and momentum conservation equations,
Egs. (1) and (3).

basic variables a, D, Vv, Vl, the determinant

for the differences of the

form for a nontrivial solution is obtained :

:o.(:fM’.) a e, -1-V)  ap,lg 0
ﬁp,(;fx‘\“_i» a; (G- 1-V)) 0 @piog
dey @09 ap, 1oV pf, Al ~f ]

| 0 ol —f.Al @ p (G- 1+V e f, 0L

where J is the number of axial mesh. for
simplicity, we assume that
ajv,, ajv,.
If void fraction is not equal to zgro or one,
that is, flow is in two phase, the following

characteristic equation can be obtained :

a?+a+ay=0 7
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where
Q= mvul(‘lvpl + ulpv) +/AAI‘

d4s a0 [(Zu,p, + f A )V, - 1)+
Qa,p; + + f;Atlo )V, - 1)]

ay =@, o [alp\v”_'v—‘ D? + a0 (V) - ’)2]

If the characteristics, {. is divided as real

and imaginary parts such as { =p+ai Eq. (7)
results in the following two equations :

+ Real part:
a(pl-q)+bp -cqg+d =0 ®)
- Imaginary part :
2apq +bg +¢p +d, =0, )
where

N S P
b=a,0 [(Za,p, + f A, ), Co - 1)+
Qo p; + f,&/a)(x,C, - 1) ]
€ =a,0 [('.’a,p, + fAvio)x, S, + e,y *’f.A‘/GletS:]
d =a,q [a,p,((xvC, - -(x,5)H +
a, p((x,C, = 1* = (xS, )2)],
dy=2a,q [u,p,(.xvC, - Dy, S, + o, p(xCy - “‘15:]'

x, = (At/A)Y,,
A = (AAD,,
C,=1-cost . and

§; = sin@.

The error growth rate must be less than one
to ensure the stability :

o<t a0

The above imequality gives the following ex-
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pression :

p'+a’<l. (1

Applying Eqs. (8) and (9) to the inequality
(11) yields the stability criterion, However.
the nonlinearity of Eqs. (8) and (9) is too
high to obtain the values p and q explicitly
except the global spectrum (¢ =x). Lots of
numerical tests are performed for every
spectrum to know the error growth rate by
solving the nonlinear Eqs. (8) and (9) with
the arbitrarilly given void fraction and
interfacial drag coefficient. the numerical test
results show that the stability limit in the case
with § == is smallest. For example, the error
growth rates with the void fraction, 0.35, the
interfacial drag coefficient, 1.0X10° pres-
sure, 13.8 MPa, and the material convective
limit, 0.3 sec, are shown in Figs. 1 and 2
according to the spectrum. As the interfacial
coefficient decreases, the error growth rates
in the case with g=n increase, but still they
are smaller than that in the case with g##n.
The error growth rate in the case with §=x is
easily obtainable because coefficients ¢ and d,
in Eqs. (B) and (9) becomes zero. There-
fore, the following simple relation is obtained
from Egs. (8) and (9):

2
g -
io.—
L
0- e L i 1 1 A A
] 10 ] ) «© 20 [ ] »

Convective namber ( x = MvdaV )

Fig. 1. The error growth rate of SETS-WM in
the case with ==z,
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Fig.2. The error growth rate of SETS-WM in
the case with ==,

2apq +bg =0. a2

42=p2=(b/a)p +d/a. 13

Substituting eqs. (12) and (13) to the stability
condition of Eq (11) yields :

v, v,
a0 [a. P+ oup, (;)’]u' sda,0
v, Vi
P () + opr(r) &+ i (14)

Rearranging Eq. (14) gives the following
stability limit for SETS-WM :

GIPV(VV/AI) + avpl(vl/A‘z)

At <
o p, (V,/82)° + &, py (V, /A2 Y

f‘- l(4a, 0.1)
ap, (V,/A2)% + a,p,(V,/A2)

7 (15

where the first and second terms of the limit
represents the convective limit and contri-
bution enhanced by the interfacial drag force,
respectively,

If void fraction is equal to zero or one,

¢ =0.

In single-phase flow, SETS-WM is
unconditionally stable

3.2 Comparison of Error growth

Rates between the |. C. E. Method
and the SETS-WM Method

The numerical stability test shows that the
[. C. E. method fails within few steps if the
time step size is larger than the material
convective limit. But the SETS-WM method
fails after very large steps when the time step
size is larger than the limit suggested in
Eq. (15). This is due to the fact that the
dependance of the error growth rate upon the
time step size is different between the . C.
E. method and the SETS-WM method.

The error growth rate of the [ C. E.
method is as follows :

GG" =1+ 2(1 - cosO)(Ar/AzV Y(AL/ALY - 1), 16

The error growth rate is largest in the case
with § =n,

R =" =@viaznar - 1. a7

However, the interfacial momentum ex-
change terms make the error growth rate of
the SETS-WM method as follows :

2V/Az)Ar - 1
R = L_)_.
AAr + 1 a8

where
PR | S
a, o (o, P +oyp,)

Figure 3 shows the diffecence of the error
growth rate between the SETS-WM method
and the [. C. E. method. the differences are
as follows :

1. The error growth rate of the [. C. E.
method has linear dependence on the time
step size, but that of the SETS-WM method
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very :mildly depends jon the time.step size for
the sufficient]y“..large .interfacigl drag
coefficient. ‘

2. Every vspectrum takes part in the
in#fability of the L C. E ‘method but only the
spectrurﬁ with ¢ == takes part in the
instability of the SETS-WM method.

The ‘above differénces affect the stability
charaéteristics between thé I. C. E. method
and the SETS-WM method.

4. Results and Discussions
A number ' of numerical experiments are
performed using the SETS-WM scheme and
the results are compared to those of
THERMIT which uses thé semi-implict scheme,
and to those of THERMIT-WM which are
made on fhe basis of THERMIT with the

SETS and SETS-WM schemes,
Problem 1. single Phase Heating

respectively.

The object of the present simulation is to
see the stability of THERMIT-WM with the

Table 1, Data of heating and cooling down

pipe

] 10

6

4

Error growth eae (R = V(* )

12 14

Coavective nmnber ( 1 = AVAZV )
Fig. 3. The effect of the interfacial momentum
exchange term on the error growth

rate: A=0 :thel. C. e. method

larger time step size than the convective
stability limit in single phase.

The straight vertical pipe of 12 volumes as
listed in table 1 is heasted by the internal
heat source, SMW/# in the step at t=0. The
inlet boundary conditions of the pipe consist
of an influx of subcooled water with a

temperature of 550°K at 13.79 Mpa.

Total
Number of Nodes
(nt)
(m/s)
(MPa)

length  (m)
Area per node

Inlet velocity

Pressure

0.762
12
0. 0019635
0.36
13.79

THERMIT-WM is run with time step sizes
from 0.01 seconds to 10 seconds increasing
10

seconds, corresponds to the fifty-five times of

linearly at each ste. the time step size,
thre material Courant limit and there is no
instability as shown in Fig. 4. the exceeding

time stép size des not affect velocity but

and the

stabilization of the mass and energy corrects

temperature at the basic step,

temperatur properly. this simulation dem-
onstrates that THERMIT-WM is unconditionally
stable in the single phase case as expected in
the linear local von Neumann stability anal-

ysis.
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Temperature (*K)
552
L T

530.

! 10° 10! 107

Time in sec,

Fig. 4. The temperature change for the problem
of the single-phase heating by the
SETS-WM method.

{time step size=55 xconvective limit
(0. 3sec)]

Problem 2. Heating and Cooling
In order to see the stability and the accu-
racy of THERMIT-WM, a numerical test is

performed in the same geometry as problem

1. The inlet boundary conditions of the pipe
consist of an influx of the liquid with velocity
of 0.36m/sec which is slightly subcooled of
608.6  at 13.79 MPa. This pipe is heated by
the internal heat source 15 MW/# from the
step at t=0 to the step at t=6 seconds and
the internal heat source is removed at 6
seconds.

figure 5 shows the change of the void
fraction at the last cell in the pipe.
THERMIT-WM and THERMIT obtain the same
steady state value after 3 seconds and 9
seconds, with time step size of 0.1 sec,
which is two or three times of the convective
limit. The required steps for THERMIT,
THERMIT-WM, and THERMIT-PF to simulate
till 12 second are 382, 117. and 117,
respectively, And the computational time of
THERMIT, THERMIT-PF, and THERMIT-WM
with I BM-370 is 83 seconds, 37.64 seconds,

]
o

Void fraction

12

Time in sec

Fig. 5. The estimated void fraction by THERMIT
and THERMIT-WM for the problem of
the two-phase heating-up and
cooling-down,

[time step size=3 xconvective limit
(0. 3sec) ]

and 24.69 seconds, respectively. The relative
error of the void fractidn between THE-
RMIT-WM and THERMIT is within 5% and the
same degree of agreement for velocity and
temperature are obtained.

The comparison of the CPU time is done at
the steady state obtained after 6 seconds. the
node cycles, which 1s the CPU time per node
per number of step, is 0.118 sec, 0.0181 sec,
and 0.0279 sec, for THERMIT, THERMIT
-WM, and THERMIT-PF with IBM-370,
respectively.

Problem 3. Blowdown simulation

The object of this simulation are to show
efficiency in the compuatation of THER-
MIT-WM comparing to that of THERMIT. A
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test tank has the geometry as shown in Fig.6
with 9 cells. there is subcooled liquid with
temperature of 520°F and with pressure of
2337.4 psia in the tank. the FLASH-1 test is
performed with the break of the (.0061% of
outlet area and the FLASH-2 test is compared
with resuits predicted by the WFLASH code
with the 6.1X107'% of the break area.

LE‘JT .

NS s S

0.1031 -

b— -4 2.9972

03048

Fig.6. The apparatus of FLASH-test and
nodalization.
In the FLASH-] test the transient takes 50

seconds to blow down to atmospheric pres-
sure. Its numerical simulation is done up to
20 seconds shown in Fig.7. THERMIT spent

=L

Pressure in MPa

10? 10? 10t 100 10!
1Time in sec

Fig.7. Pressure transient for the FLASH-1 test.

49.25 second with 320 steps to simulate it.
Both of THERMIT-WM and THERMIT-PF,
however, take 45 steps during this numerical
simulation and take the computational times of
16.41 seconds and 22.13 seconds,
respectively.

In the FLASH-2 test the transient is so slow
that the pressure could reach around 500 psia
after 5 hours. all of the scheme show the
same trend as shown in Fig. 8. Up to 100000
real time calculation THERMIT takes 250
steps, and THERMIT-WM and THERMIT-PF
takes 41 steps. The calculation times of
THERMIT, THERMIT-PF, and THERMIT-WM
take 55.74 sec, 12.12 sec, and 9.98 sec,

respectively.

Pressure in MPa

o 2 . N N s 2
w0 10! 0 10 100 10 10t 10
Tiane in sec

Fig. 8. Pressure transient for the FLASH-2 test.

Table 2 shows the fast running capacity of
THERMIT-WM. the difference of results be-
tween of the SETS-WM and of the WFLASH
are due to the difference of physical model
such as the wall friction and the critical flow

model.

Conclusions

Based on the stability analysis and the
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Table 2. Comparisons between real time and CPU time.

Blowdown Real time CPU Time step
test time size
(sec) (sec) (sec)
THERMIT 20. 49.25 0. 052
THERMIT-PF FLASH-1 20. 22.13 0.52
THERMIT-WM 20. 16. 41 0. 52
THERMIT 100000. 55.74 640.
THERMIT-PF FLASH-2 100000. 12.12 8000.
THERMIT-WM 100000. 9.98 8000.

* The time step sizes of FLASH-1 test are during real time from 13.7 sec to 14.22 see.
*The time step sizes of FLASH-2 test are during real time from 54393. 14 sec to 62393. 14 sec.

results of the numerical simulation, the 3. The instability of the SETS-WM method
following conclusions can be concluded : reslts from one-mode spectrum with =z
‘1. Removing the momentum stabilization and the growing rate of the SETS-WM
steps from the SETS method results in the method is much smaller than that of the . C.
stability limit which is larger than the E. method.
convective limit. 4. The SETS-WM method produces
2. The interfacial momentum exchange unconditional stability in single phase flow.
terms play a most important role in enlarging 5. The easy extension of the SETS-WM
the stability limit larger than the convective scheme to the multi-dimensional case can be
stability limit. assured.
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Nomenclature

= accoustic velocity, coefficient

a a = void fraction

e = internal energy I’ = Vapor generation rate

f, = interfacial momentum exchange © = density

p = pressure { = characteristic

Q = rate of heat transfer per unit volume subscripts

t = time i = interfacial, nodal direction
T = temperature 1 = liquid

At = time step size v = vapor

v = velocity w = wall

X = convective limit (x=at/azV) Superscripts

Az = axial mesh size n = time step

B X ¥ #%

L C.E (%4 73 2azieeh) 7ol 2t 44 Ad2AL Sol47)7] sl 2904 hA4 217
H(SETS)e] H2 =3 ™ FHAUS) 2cf A8 Halz =9l TRAC-PF o] AL 5], o)=L C. E
B4 Flectalel s dAE Fohgc) o)2|gh SETS w49 34 27 97 S84 wAe Auc
Zobd A4t e E FeHA0ch 22} SETS ol 4185 Lol el b3} chAls S|4 4lo] 2o
Holl wte} Yo arlz Fosig,

T ATE oY EA A4 SETS 9419} sz as& Fol7] Y84, a22ln o|4sMe] AAe 2
$3t =Y ARl AN Y& 28] YA, SETS wAlolA 2olel ks S AASHL(S
ETS-WM) 4213 o3 4& sidgc}

13449 444 2L E ol A4 # Yol o FH A}

AR =9y A Folef 2 1§ s o) WA

SETS-WM %42 M. I T ¥efol 4 145 THERIT Z=§ 2722 st sAgsign, B +x44 2
2 AFelA AAY A4 A7) dellH £ A FFglo] Aol wAsiglch
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