RIEMANNIAN MANIFOLD \hat{M} IN SPACE (X, I) UNDER INVERSION

Jin-oh Hyun*

0. Introduction.

It is our purpose in this paper to define and study some properties of manifold \hat{M} under inversion, especially structure of inversion manifold \hat{M} .

As in the case of C^{∞} -manifold, which are Riemannian manifold, we begin with Euclidean space E^n under inversion.

Transformation $I: E^n-(0,\cdots,0)\to E^n$ defined by $I(\mathbb{X})=R^2\mathbb{X}^{-1}$ made up Inversion space (\mathbb{X},I) .

In theorem.1.3, function \hat{f} is continuously differentiable on (X, I), and so theorem.2.3 show the inversion manifold \hat{M} is Riemannian manifold.

1. Inversion space.

Let E^n be on Euclidean space of dimension n, and let $S^n_R(0)=\{(x^1,x^2,\cdots,x^n)\in R^{n+1}|\sum_{i=1}^{n+1}(x^i)^2=R^2\}$ is a n-sphere in E^n .

Definition.1.1. Two points $\mathbb{P}, \hat{\mathbb{P}} \in E^n$ are said to be inverse with respect to a given sphere $S_R^n(0)$, if

$$O\mathbb{P}\cdot O\hat{\mathbb{P}}=R^2$$

where $\mathbb{P}, \hat{\mathbb{P}}$ are on the same side of O and $O, \mathbb{P}, \hat{\mathbb{P}}$ are collinear.

A sphere $S_R^n(0)$ is called the sphere of inversion and the transformation which sends a point \mathbb{P} into $\hat{\mathbb{P}}$ is called an inversion.

From now on, we take the center O as an origin of the coordinate system in E^n and denote the distance from O to inside point \mathbb{X} of $S_R^n(0)$ by $|\mathbb{X}|$.

^{*} 수학교육과 교수, 과학교육연구소 연구원

Then the inversion mapping defined by

$$I: E^n - (0, \cdots, 0) \rightarrow E^n$$

for all $X \in E^n - (0, \dots, 0)$, such that

$$I(X) = \frac{R^2}{\langle X, X \rangle} X$$

That is, the inversion I(X) is the vector of length $R^2|X|^{-1}$ on the ray of X.

Definition.1.2. Inversion space (X, I) is a collection of all space which for every point X inside of $S_R^n(0)$ there is a space whose image consists of a neighborhood of X under inversion and outside of $S_R^n(0)$.

 E^n -space inside of $S_R^n(0)$ is a subspace of E^n denote by (X, S).

Let M be a C^{∞} -Riemannian manifold in (X, S) not through O and let

$$\hat{M}=I(M)=\{I(\mathbb{X})\in(\mathbb{X},I)|I(\mathbb{X})=rac{R^2}{|\mathbb{X}|^2}\mathbb{X}\}\,.$$

Then \hat{M} be a *n*-dimensional metric space.

Let $\hat{U} = I(U)$ be an open set of \hat{M} about open set U of M.

For every $\mathbb{X} \in U$, inversion $I|_U : U \to \hat{U}$ is one to one and continuous, there exists I^{-1} such that $I^{-1} : I(U) \to U$ is continuous in \hat{M} .

Hence for every open $U \subset M$, $I: M \to \hat{M}$ is homeomorphism.

Let an open set $U \subset R^n$ for function f in (X, S) if $f: U \to R$ define $f(X) = (x^1, x^2, \dots, x^n)$ denotes its value $X = (x^1, x^2, \dots, x^n) \in U$.

Then there is a function $\hat{f}: \hat{U} \to R$ in (X, I) and we have the followings.

Theorem 1.3. Let f is continuously differentiable on U. Then \hat{f} is continuously differentiable on \hat{U} .

Proof. Let a point $\hat{\mathbb{X}} \in (\mathbb{X}, I)$ corresponding to $\mathbb{X} \in (\mathbb{X}, S)$. For every open set U in (\mathbb{X}, S) , the mapping $\hat{f} \circ I(U) \to R$ given by, for each $\mathbb{X} \in U$,

$$\hat{f}(I(X)) = \hat{f}(\hat{X}) = \frac{R^2}{\sum_{i=1}^n (x^i)^2} f(x^1, x^2, \dots, x^n).$$

The limit value of j-partial derivative of \hat{f} as follows:

$$D_{j}\hat{f}(\mathbb{X}) = \lim_{h^{j} \to 0} \frac{\hat{f}(\hat{x^{1}}, \dots, \hat{x^{j}} + h^{j}, \dots, \hat{x^{n}}) - \hat{f}(\hat{x^{1}}, \dots, \hat{x^{j}}, \dots, \hat{x^{n}})}{h^{j}}$$

$$= \lim_{h^{j} \to o} \frac{R^{2}}{(x^{1})^{2} + \dots + (x^{j} + h^{j})^{2} + \dots + (x^{n})^{2}} \cdot \frac{f(x^{1}, \dots, x^{j} + h^{j}, \dots, x^{n})}{h^{j}}$$

$$- \lim_{h^{j} \to 0} \frac{R^{2}}{\sum_{i=1}^{n} (x^{i})^{2}} \cdot \frac{f(x^{1}, \dots, x^{j}, \dots, x^{n})}{h^{j}}$$

$$= \frac{R^{2}}{\sum_{i=1}^{n} (x^{i})^{2}} D_{j} f(\mathbb{X})$$

where $D_j f$ is j-partial derivative of f. Thus

$$D\hat{f}(\hat{\mathbb{X}}) = D_1 \hat{f}(\hat{\mathbb{X}}) + \dots + D_j \hat{f}(\hat{\mathbb{X}}) + \dots + D_n \hat{f}(\hat{\mathbb{X}})$$

$$= \frac{R^2}{\sum_{i=1}^n (x^i)^2} D_1 f(\mathbb{X}) + \dots + \frac{R^2}{\sum_{i=1}^n (x^i)^2} D_j f(\mathbb{X})$$

$$+ \dots + \frac{R^2}{\sum_{i=1}^n (x^i)^2} D_n f(\mathbb{X})$$

$$= \frac{R^2}{\sum_{i=1}^n (x^i)^2} Df(\mathbb{X}).$$

Thus \hat{f} is differentiable.

2. Inversion Manifold.

Let M be a metric space and let the coordinate chart (U,ϕ) of one-to-one continuous function $\phi:U\to R^n$ is proper. For $\hat{\mathbb{X}}\in\hat{M}$, take a coordinate chart $(\hat{U},\hat{\phi})$ about $I(\mathbb{X})=\hat{\mathbb{X}}$ and atlas $\hat{\mathfrak{a}}$ of \hat{M} . Since I is homeomorphism, there exists a inverse $\hat{\phi}^{-1}:\hat{\phi}(I(U))\to\hat{U}$ is continuous. Thus $\hat{U},\hat{\phi}$ is proper. Let $(\hat{U},\hat{\phi}),(\hat{V},\hat{\psi})\in\hat{\mathfrak{a}}$ with respect to coordinate chart $(U,\phi),(V,\psi)$ of M with $\hat{U}\cap\hat{V}=\emptyset$, respectively.

If M be a C^{∞} manifold, then $\psi \circ \phi^{-1}: \phi(U \cap V) \to \psi(U \cap V)$ is a C^{∞} diffeomorphism. By means of theorem 1.3,

$$\hat{\psi} \circ \hat{\phi}^{-1} : \hat{\phi}(\hat{U} \cap \hat{V}) \to \hat{\psi}(\hat{U} \cap \hat{V})$$

is also C^{∞} deffeomorphism.

Thus we have the followings.

Lemma.2.1. Manifold \hat{M} in (X, I) is an n-dimensional c^{∞} -manifold.

Let M be a manifold in (X, S) and $X_p = \sum_{i=1}^n \alpha^i \mathbb{E}_{ip}$ be a vector field at $p \in M$. If \mathbb{E}_{ip} is natural basis, then the vector field $X_{I(p)}$ of (X, I) at I(p) is defined by

$$\mathbb{X}_{I(p)} = \frac{R^2}{\sum_{i=1}^n (\alpha^i)^2} \mathbb{X}_p$$

Note: The direction of component vectors of $\mathbb{X}_{I(p)}$ is at least one at least one opposite direction of the component vectors of \mathbb{X}_p .

Definition.2.2. The tangent space to \hat{M} at I(p) is the set of all tangent vector to \hat{M} at I(p) denote by $T_{I(p)}(\hat{M})$

Let $\hat{\Phi}: T(\hat{M}) \times T(\hat{M}) \to R$ be an inner product on a manifold \hat{M} , that is, for each $I(p) \in \hat{M}$, the map $\hat{\Phi}_{I(p)}: T_{I(p)}(\hat{M}) \times T_{I(p)}(\hat{M}) \to R$ is a C^{∞} bilinear form satisfying

- i) $\hat{\Phi}_{I(p)}(\mathbb{X}_{I(p)}, \mathbb{Y}_{I(p)}) = \hat{\Phi}_{I(p)}(\mathbb{Y}_{I(p)}, \mathbb{X}_{I(p)})$ (symmetric)
- ii) $\hat{\Phi}_{I(p)}(\mathbb{X}_{I(p)}, \mathbb{Y}_{I(p)}) \geq o$ and $\hat{\Phi}_{I(p)}(\mathbb{X}_{I(p)}, \mathbb{Y}_{I(p)}) = 0 \Leftrightarrow \mathbb{X}_{I(p)} = 0$ (positive definite).

Let $(\hat{U}, \hat{\phi})$ be a local coordinate system of \hat{M} , then the basis of $T_{I(p)}(\hat{M})$ is $(\mathbb{E}_{1I(p)}, \dots, (\mathbb{E}_{nI(p)})$. That is

$$(\mathbb{E}_{iI(p)} = I(\mathbb{E}_{ip}) = \frac{R^2}{|\mathbb{E}_{ip}|^2} \mathbb{E}_{ip} = \frac{R^2}{n} \mathbb{E}_{ip} = I \circ \phi^{-1} (\frac{\partial}{\partial x^i})$$

where $p \in U, \phi(p) = (x^1, \cdots, x^n) \in R^n$

Theorem 2.3. The manifold \hat{M} in (X, I) is Riemannian manifold.

Proof. Let M be a manifold with Riemannian metric tensor g and let (U, ϕ) be a local coordinate system of M. For a basis of $T_p(M)$ of $(\mathbb{E}_{1p}, \dots, \mathbb{E}_{np})$,

$$\mathbb{E}_{ip} = \phi^{-1}(\frac{\partial}{\partial x^i})_{i=1,\dots,n}, \text{ for } p \in U, \phi(U) = (x^1,\dots,x^n) \in \mathbb{R}^n$$

If the map $\Phi: T(M) \times T(M) \to R$ be an inner product on M defined by

$$\Phi_p(\mathbb{E}_{ip},\mathbb{E}_{jp})=g_{ij}(p)$$

Then the map $\hat{\Phi}: T(\hat{M}) \times T(\hat{M}) \to R$ is given by

$$\begin{split} \hat{\Phi}_{I(p)}(\mathbb{E}_{iI(p)}, \mathbb{E}_{jI(p)}) &= \hat{\Phi}_{I(p)}(I(\mathbb{E}_{ip}), I(\mathbb{E}_{jp})) \\ &= (\frac{R^2}{n})^2 \Phi_p(\mathbb{E}_{ip}, \mathbb{E}_{jp}) \\ &= (\frac{R^2}{n})^2 g_{ij}(p) \,. \end{split}$$

We put $\hat{\Phi}_{I(p)}(\mathbb{E}_{iI(p)}, \mathbb{E}_{jI(p)}) = \hat{g}_{ij}(I(p))$ is metric on \hat{M} .

$$\hat{g}_{ij}(I(p)) = (\frac{R^2}{n})^2 g_{ij}(p)$$
.

Let \hat{g} be a determinant of $\hat{\Phi}_{I(p)}(\mathbb{E}_{iI(p)}, \mathbb{E}_{jI(p)})$, then

$$\begin{split} \hat{g} &= det(\hat{g}_{ij}(I(p))) \\ &= det \begin{pmatrix} \hat{g}_{11}(I(p)) & \cdots & \hat{g}_{1n}(I(p)) \\ \vdots & & \vdots \\ \hat{g}_{n1}(I(p)) & \cdots & \hat{g}_{nn}(I(p)) \end{pmatrix} \\ &= det \begin{pmatrix} (\frac{R^2}{n})^2 g_{11}(p) & \cdots & (\frac{R^2}{n})^2 g_{1n}(p) \\ \vdots & & \vdots \\ (\frac{R^2}{n})^2 g_{n1}(p) & \cdots & (\frac{R^2}{n})^2 g_{nn}(p) \end{pmatrix} \\ &= (\frac{R^2}{n})^{2n} g \,, \end{split}$$

where g is determinent of metric $g_{ij}(p)$ on M.

For $\mathbb{X}_{I(p)} = \sum \alpha^i \mathbb{E}_{iI(p)}$, $\mathbb{Y}_{I(p)} = \sum \beta^j \mathbb{E}_{jI(p)}$ vectors in $T_{I(p)}(\hat{M})$, we have

$$\begin{split} \hat{\Phi}_{I(p)}(\mathbb{X}_{I(p)}, \mathbb{Y}_{I(p)}) &= \hat{\Phi}_{I(p)}(\sum \alpha^{i} \mathbb{E}_{iI(p)}, \sum \beta^{j} \mathbb{E}_{jI(p)}) \\ &= (\frac{R^{2}}{n})^{2} \sum_{i,j=1}^{n} \alpha^{i} \beta^{j} g_{ij}(p) \end{split}$$

manifold \hat{M} have the Riemannian metric g.

References

- [1] Adler, Modern Geometry. McGraw-Hill. lnc, 1967.
- [2] Daniel Martin, Manifold Theory an Introductor for Mathematical Physicists. Ellis Horwood Limited, 1991.
- [3] K. Yano & M. Kon, Structures on Manifolds. World Scientific Publishing Co., 1984.
- [4] S. Helgason, Differential Geometry. Lie Groups, and Symmetric Spaces. Academic Press, 1978.
- [5] W. Klingenberg, Riemannian Teometry. Walter de Gruyter, 1982.
- [6] W. M. Boothby, An Introduction to Differential Manifolds and Riemannian Geometry. Academic Press, 1975.

<국문초록>

반전에 의한 공간 (\mathbb{X},I) 에 있는 리만 다양체 \hat{M}

현 진 오

반전구 $S_R^n(0)$ 의 내부공간 (\mathbb{X},S)에 있는 다양체가 반전 $I:(\mathbb{X},S)\to(\mathbb{X},I)$ 에 의하여 재구성 되는 반전 다양체 \hat{M} 의 성질을 구명하기 위하여 기본적으로 가장 필요한 \hat{M} 을 정의하고 정리 1.3에서는 (\mathbb{X},I)에서의 함수 \hat{f} 가 연속이 되고 미분가능함을 보이고, 정리2.3에서는 \hat{M} 도 리만 다양체가 됨을 보인다.