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RIEMANNIAN MANIFOLD M IN
SPACE (X,/) UNDER INVERSION

Jin-oh Hyun*

0. Introduction.

It is our purpose in this paper to define and study some properties of manifold
M under inversion, especially structure of inversion manifold M.

As in the case of C'°°-manifold, which are Riemannian manifold, we begin
with Euclidean space E™ under inversion.

Transformation I : E™ — (0, -- ,0) — E™ defined by I(X) = R°X~! made up
Inversion space (X, I}.

In theorem.1.3, function f is continuousely differentiable on (X, ), and so
theorem.2.3 show the inversion manifold M is Riemannian manifold.

1. Inversion space.

Let E™ be on Euclidean space of dimension n, and let SE(0) = {(z*, 2%, -,
z") € R"Y S22 = R?} is a n-sphere in E™.

Definition.1.1. Two points P, P € E™ are said to be inverse with respect to a
given sphere S;(0), if
OP-OP = R?

where P, P are on the same side of O and O,P,P are collinear.

A sphere 5%(0) is called the sphere of inversion and the transformation which
sends a point P into P is called an inversion.

From now on, we take the center O as an origin of the coordinate system in
E™ and denote the distance from O to inside point X of SE(0) by |X].
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Then the inversion mapping defined by
I:E"-(0,---,0)— E"
for all X € E® — (0,---,0), such that

R2
X) = ——e
I[x) <X,X>X

That is, the inversion I(X) is the vector of length R?|X|~! on the ray of X.

Definition.1.2. Inversion space (X, I) is a collection of all space which for every
point X inside of SE(0) there is a space whose image consists of a neighborhood
of X under inversion and outside of S%(0).

E™-space inside of SE(0) is a subspace of E™ denote by (X, S).

Let M be a C°-Riemannian manifold in (X, S) not through O and let

“ 2
M =I(M) = {I(X) € (X, I(X) = %EX} .

Then M be a n-dimensional metric space.

Let U = I(U) be an open set of M about open set U of M.

For every X € U, inversion I|y : U — {7 is one to one and continuous, there
exists 17! such that /=1 : [(U) — U is continuous in M.

Hence for every open U C M, I : M — M is homeomorphism.

Let an open set U C R™ for function f in (X, S) if f: U — R define f(X) =
(a:l,;cz, ..., z™) denotes its value X = (z!,22,--- ,z") € U.

Then there is a function f: U — R in (X, I) and we have the followings.

Theorem 1.3. Let f is continuously differentiable on U. Then f is continuously
differentiable on U.

Proof. Let a point X € (X, I) corresponding to X € (X, S). For every open set
U in (X, S), the mapping f o I(U) — R given by, for each X € U,

. A s R?
f(I(X)):f(X): mf(xl,.’E?,"' ’In)'



Rimannian Manifold M in Space (X, I) Under Inversion - 383

The limit value of j-partial derivative of f as follows :

PR ~ -~

7 f(l'lv"' 7-7;j+hja"' ’:I:“n)_f(xl’,._ amj"" ’xAn)

D;f(X) = hlJiTo X
R2
= lim : :
hioso (£1)2 4+ + (27 + B2 4 - 4 (z7)?
f(CL‘]‘,"' ,$j+hj,... ,z"™)
. -
. R? Flat, - 2, a?)
— lim —5 — . ,
hi—0 Y (x)? hJ
R2
= = Dif(X
Zi=1($1)2 ’ ( )

where D; f is j-partial derivative of f. Thus

Df(X) = Dif(X) + - + D; f(X) + - + Do f(X)
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Thus f is differentiable.

2. Inversion Manifold.

Let M be a metric space and let the coordinate chart (U, ¢) of one-to-one
continuous function ¢ : U — R™ is proper. For X € M, take a coordinate
chart (U, ®) about I(X) = X and atlas & of M. Since I is homeomorphism,
there exists a inverse ¢~ : ¢(I(U)) — U is continuous. Thus U, ) is proper.
Let (U, 0), (V, w) € a with respect to coordinate chart (U, ¢), (V,v¢) of M with
UNV =0, respectively.

If M be a C*™ manifold, then po¢p~! : ¢(UNV) - p(UNV)isa C®
diffeomorphism. By means of theorem 1.3,

vod Tt p(UNV) = (U NV)
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is also C*° deffeomorphism.
Thus we have the followings.

Lemma.2.1. Manifold M in (X, I) is an n-dimensional ¢®-manifold.

Let M be a manifold in (X,S5) and X, = 3" | o'E;, be a vector field at
p € M. If E;;, is natural basis, then the vector field X of (X, 1) at I(p) is
defined by
R2
Xyip = =X
D DN Ot

Note : The direction of component vectors of X I(p) 18 at least one at least one
opposite direction of the component vectors of X,,.

Definition.2.2. The tangent space to M at I (p) is the set of all tangent vector
to M at I(p) denote by Tl(p)(]\l)

Let & : T(M) x T(M) — R be an inner product on a manifold M, that is,
for each I(p) € M, the map (ﬁ,(p) : T](p)("ff) X Tl(p)(M) — R is a C*° bilinear
form satisfying )

1) 1) (X1, Yrp1) = S16) (Y1), X1 (py) (symmetric)

11) q)](p) (X](p Y](p)) > o and <I>1(p)(X1(p),Y1(p)) =0« X](p) = 0 (positive
deﬁmte)

Let (U ) be a local coordinate system of M, then the basis of Trp) (M) is
(Eir¢py, -, (Bnr(py)- That is

R? R?

-1
(]E”(P) - I 117) I]Eipleip n —E; ip — =Tlog¢ (

(99:‘)

where p € U, ¢(p) = (z!,--- ,2") € R”

Theorem 2.3. The manifold M in (X, I) is Riemannian manifold.

Proof. Let M be a manifold with Riemannian metric tensor g and let (U, @) be

a local coordinate system of M. For a basis of Tp(M) of (Eip,--- ,Enp),
-1 6 1 n n
Eip:¢ (81'1) , Ty forpEU¢( ) (.T,,.I)GR
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If the map @ : T(M) x T(M) — R be an inner product on M defined by
©5(Eip, Ejp) = 9:5(p)
Then the map & : T(M) x T(M)— R is given by
@16 (i1 Es 1)) = 1) (1(Bip), 1(E55)
- Eya,m,.E,)
R2

= (5)%5(p) .

We put (Ab](p) (]Eil(p)v]Ejl(p)) = glj(j(p)) is metric on AAI
. R?
31 (1(P)) = ()29, (p).

Let § be a determinant of él(p) (Eirp), Ejr(p)), then

g = det(§:;(1(p)))

au(p)) - Gin(I(p))

= det : :
in(f(p)) T gnn(I(p))
(E)20np) -+ (E)’g1alp)

= det : !
(é;)2gnl@ﬂ T (%?)zgnn(p)

R? n
= (7)2 )

where g is determinent of metric g,;(p) on M.
For X;(p) = 2 a'Eiyipy, Yip) = 3 87Ejy(p) vectors in Ti(py (M), we have

1) X1y Yiem) = @10 (Y @'Bareys 3 AEj1(p)
= (R—z)2 Zn: o' # g.;(p)
n Y

tj=1

manifold A have the Riemannian metric g.
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