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1 Introduction

There has been considerable progress in understanding the field the-
ory [1] and the string theory on the noncommutative space[2]. Especially.
the presence of magnetic field in the string theories yields to a noncom-
mutative structure for the space time[3]). Basing on these results, there
have been many attempts to reformulate Quantum Mechanics (QM) on
the noncommutative space(4,5]. In QM on the noncommutative space,
Schrédinger equation is replaced by the x-genvalue, while the wave func-
tions become Wigner functions. The ordinary product is replaced by the
associative noncommutative x-product[6]. Using these replacements, the
variations of energy eigenvalue and Aharonov-Bhom effect, etc, are newly
discussed(7].

In the present work it is shown that the *-genvalue prolem is equiv-
alent to the Schrédinger problem in an appropriate transformation of
variables. Instead of the above replacement in the two dimensional the-
ory, selecting the commutating variables and then finding the represen-
tation for these variables, we can derive a various physical quantities as
the usual QM. Especially the energy eigenvalues are easily calculated.

This paper is organized as follows. In section 2, the commutation
relations are discussed and the transformations of variables are treated.
Also the transformation of the wave function on the configuration space
into that on the momentum space is descibed. In section 3, the eigenval-
ues and the wave functions of the free particle on the noncommutative

space are calculated.
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2 Representation

Let us consider position opreators and momenetum operators in the
two dimensional noncommutative space. They are satisfied the following

commuation relations
(1, d2] = 6,
[qAJa ﬁk] :ihé]’k, ]’kz 1a2 (1)
[ﬁl’ ﬁ?] = 1’B
where 8, B are dimensionful parameters. §; and p-, §2 and p commute
each other respectively. Thus we can redefine these operators as following
G — 21, P2 > 22,
H o, —G W2 (2)
Using these redefined operators, the commutation relations (1) can be
rewritten as follows.

(2;,2] =0,
['!i)j ,‘lf)k] = 0’ (3)
(25 ,%0k]) = i My, 5,k =1,2
where . 5
(Mj)=(_0 Y ) (4)

and M is transpose of matrix M. Then QM on the noncommutative
space described by relations (1) can be replaced with the usual QM
basing on the relations (3) and we can treat Z; as position operators and
wy as conjugate momentum operators.

Before writing down an equation, one has to search for a suitable
representations for the operators satisfying the commutation relations
(3) (z-representation)

2j -+ 2z, '!f)j — —iMjkak , j,k = 1,2 (5)
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where Oy = 8/0z;. The Hamiltonian and the Schrodinger equation with
respect to the new variables become

H(p,§) - H(w,2) = H (—iM18%, 2;) , (6)

H(w, 2)i(21,22) = Ey(21, 22) (7

where (21, z;) and E are wave function and energy eigenvalue respec-
tively. So, instead of solving the x-genvalue problem, one can try to
solve the Schrédinger equation to find the wave functions and the en-
ergy eigenvalues.

In order to find the wave functions given by functions of wy,ws,
we must transfom functions of z;, z; into functions of w; ,w2. Because
21,22 do not commute with i,,1; respectively, the ordinary Fourier
transfomation could not be used. Let’s use the following Ansatz

Y(wr, we) = #l_) /dz1sz P(21, zp)e~ iz M wn (8)

where D is the determinant of Mjz, M7* inverse matrix of M;y. The
inverse transformation is

1 - i M
Y(21,22) = m/dwldwg w(wl,wg)e”'"" Fws , (9)
and the Dirac delta function becomes
1 : 3 ’
5@ ) = — L / dz1 dzy M (wr—wi) (10)

()

Using these transformations, we can get the representations for 2; and
w; on the w-space (w-representation):

- 0 .
éj"‘)iMjka—myﬁJj—’wj,]ak:]»a2- (11)

From these representations and Eq. (9), the Hamiltonian on the w-space
is represented as follows

H(,3) = H (w,-, iMj,,a/aw,,) , (12)
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and the Schrodinger equation becomes
H (w,-,iMjka/Bwk) J(wl, wz) = E’l/;(wl ,‘wz) . (13)

Thus we can get the wave functions on the w-space from the wave func-
tion on the z-space using the transformations (8) or from the Schrodinger
equation (13) directly.

3 Free particle on noncommutative space

Hamiltonian of the free particle on the noncommutative space is given

by
A-lpligen "

where parameters are absorbed in the variables. Using the redefined
vairables (2) and their representations (5), this Hamiltonian is rewrtten

as follows
H = } (w? + 23)
- 2 1 2
. 1 2 2
= 5 [— (h8, — Bdy)* + 22] : (15)

From the Schrédinger equation the following equation is got
[(nal — B3,)* + (2E - zg)] Wz, 22) = 0. (16)

Because z; is cyclic variable, the solution to the above equation has a

form
P(z1,22) = € 19hy(22) (17)

where k is real. If k is complex, the imaginary part must vanish in
order to satisfy the continuity property of the wave function. Then the
equation (16) becomes

[(mk—la'az)2 + (2E-z§)] ¥a(z2) = 0. (18)
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We may define
ha(z) = eM/By(z,), (19)
2 = VBE, (20)
then the equation (18) is changed to
u"(€) + (2E/B - €*)u(¢) = 0. (21)

This is the differential equation for a quantum mechanical, simple har-
monic oscillator. Thus its solution and the eigenvalues are

u(g) = Ae-f’/’H ), (22)

E = (n+- )B n=20,1,2,- (23)

where A is an arbitrary constant and H,(£) the Hermite polynomials.
The general solution is

Y(a1,22) = % /dk eik(z1+hz:/3)e—§§Hn(zz/\/§)
= Ab(z + hzy/B)e %5 H,(2,/VB). (24)

But, from the first line of the Hamiltonian (15) we know that the
degree of freedom of the configuration space is one and the coordinate of
that is zo. Thus integrating equation (24) over z;, the true wave function
of the system is obtained as follows

¥n(22) = Ae~ B H,(2,/VB). (25)

These wave functions are also derived from the Schrédinger equation on
the momentum space and the transformation relations (8) and have the
eigenvalues (23) for the operator (15).

Let’s consider a wave function on the momentum space (w-space).
Using the transformation (8) and the solution (24), the wave function
on the w-space becomes

Blwn,wn) = 2m/_/dzldz26(z1 + hzy/B)
xe 7§Hn(22/\/_)e_”’M'h‘”"

= Ae T H,(w /VE), (26)
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is independent of ws. where A’ is an arbitrary constant. Because this
wave function is independent of wz, we can denote as @n(wl). Thus the
wave function on the w-space is

Gn(w1) = A'e™ Hy(u /VE). (27)

These wave functions and the eigenvalues are also obtained from the
algebraic method. The eigenvalues and the ground state wave function
are shown at the Appendix. The wave functions (25), (27) are those of
the simple harmonic oscillators in the usual QM. From these and the
eigenvalues (23) the free particle systems in the noncommutative QM
are considered as the simple harmonic oscillators on the usual QM.

4 Simple harmonic oscillator

The Hamiltonian of the simple harmonic oscillator on the two dimen-

sional noncommutative space is

.. 1,. .
H=_(p+&). (28)
In terms of the transformed variables Eq. (2), the Hamiltonian is repre-
sented as
H=1 (W + 22)
2
1
(R 87) 8 - (04 BY) 8} (29
+2h(8+ B) 818y + 22 + 23] .
Consider special cases, i.e., (B = —#)-case and (B = §)-case. First, in
the (B = —#)-case the cross term in Hamiltonian (29) vanishes. Setting

h? + 82 = 2, the Hamiltonian becomes

H= % [—x2(0% + 83) + 2% + 23] . (30)
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This Hamiltonian is same as that of the two dimensional simple harmonic
oscillator with angular frequency « in the usual QM. Thus the energy
eigenvalues are

Epm=r(n+m+1),n,m=0,1,2,---. (31)

This is equal to result of Ref[6], where these energy eigenvalues are ob-
tained by solving the s-genvalue problem. But the method proposed
here is easier than that of Ref[6).

The wave functions for this system is

(a1, 22) = Cexp [—% (2 + zg)J Hu(o VR Hm(22/VR) . (32)

The wave function on the momentum space is obtained from the trans-
formation relation (8) as follows

1 1 .
—ﬂ - '2;(01111 - h‘lUQ)

X Hyp((huwy + 0w2)/\/E)Hm((0w1 - h‘UJg)/\/E) .(33)

J’(wl,wQ) ~ e)cp[ (hw, + Bw,)?

Using the transformation propreties of Hermite polynomials, these func-
tions are represented

Blun,wa) ~ exp |~ o (w? + )| Huon/ VR im0/ /R). (3)

These are same to the wave functions obtained from the Hamiltonian on
the momentum space.
Secondly, consider the (B = #)-case. Hamiltonian (29) is

1
H= 3 (—&%(87 + 82) + 4195, 8, + 22 + z3] . (35)
In order to solve the eigenvalue problem, change the variables z;, 2, into
7 = 1 (z1 + z2)
1 — \/i 1 2/,
1
Zy = ﬁ (1:1 - .’1:2) . (36)
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Then Hamiltonian (35) becomes

a=to02 L —nr0r 2, vt a (37)

2 oz? oz 7! 72 -
This Hamiltonian describes the simple harmonic oscillator oscillating
with angular frequency h—# in one direction and oscillating with angular

frequency h+ @ in other direction. Thus the energy eigenvalues are

Enm = (h-0) (n+%) + (h+8) (m+%)
=h(n+m+1)+8(m—n), n,m=20,1,2,---. (38)

Here one can consider that the first term is corresponding to the energy
eigenvalue of the two dimensional simple harmonic oscillator in usual
QM (8 = 0 case) and the second term is due to the noncommutativity
of space.

5 Conclusion

In this paper, we considered Quantum Mechanics on the noncommu-
tative space from the point of view that the x-genvalue problem is equal
to the usual Schridinger problem through the appropriate transforma-
tion of variables.

Instead of the usual replacement in the two dimensional theory, se-
lecting the commutating variables and then finding the representation
for these variables, we can derive a various physical quantities as the
usual QM. Especially the energy eigenvalues are easily calculated.

The free particle systems in the noncommutative QM are equivalent
to the simple harmonic oscillators on the usual QM with the usual energy
eigenvalues.

The simple harmonic oscillator on the two dimensional noncommu-
tative space is transformed into the simple harmonic oscillator in usual
QM. But the energy eigenvalues are constituted of those of the two di-
mensional simple harmonic oscillator in usual QM (6 = 0 case) and of

those the noncommutativity of space.
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6 Appendix

The Hamiltonian (15) is similar to the usual Hamiltonian on the
commutative space having the coordinate 25, the momentum w;. Thus
following the usual procedure, we introduce the operators

1, L.
ax = \/_T_B— (22 + zwl) . (39)

Using the commutation relation (3) these operators can be shown to
satisfy
[a— 1a+] =1 (40)

As usual the vacuum state |0) is defined to satisfy a_ |0) = 0.Then the
Hamitonian (15) becomes

H= (a+a_ + %) B. (41)

This is Hamiltonian of the simple harmonic oscillator replacing the an-
gular frequency with B. Its energy eigenvalues

1
En=(n+5)3’ﬂ=0,1,2,~-- (42)

This result is same as the case of the simple harmonic oscillator in usual

QM.
The ground state wave function is found by using the equations
a_ |0) = 0, and representations (5) and (39). Let

Yo(z1,22) = (21,22 [0) . (43)
Then from a_tg(z1,22) =0,
(22 + W81 — BB2)yp = 0. (44)

Its solution is

Yo(z1,22) = Ae*(R+H)e=1h (45)
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and the true wave function is

2

o(22) = 21—” /dkdzl Yo(21,22) = Ae~7h. (46)

Thus we can treat the free particle on the two dimensional noncom-
mutative space as the simple harmonic oscillator in usual QM on the
commutative space.
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