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Electrical Impedance Tomography
Reconstruction Algorithm Using Extended
Kalman Filter
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ABSTRACT

In electrical impedance tomography (EIT). the internal resistivity distribution of the
unknown object is estimated using the boundary voltage data induced by different current
patterns using various reconstruction algorithms. This paper presents a reconstruction
algorithm based modified extended Kalman filter technique that is able to track fast change in
the impedance distribution. The computer simulation for the 32 channels synthetic data shows
that the reconstruction performance of the proposed scheme is improved compared to that of
the conventional Kalman filter algorithm at the expense of slightly increased computational
burden.
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I. INTRODUCTION

non—intrusive measurement properties'”
In EIT different current patterns are injected

Electrical impedance tomography (EIT)
plays an important role in monitoring tools
for the process engineering such as
biomedical, geological and chemical
engineering. due to its relatively cheap
electronic  hardware requirements and
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to the unknown object through electrodes and
the corresponding voltages are measured on
its  boundary  surface. The physical
relationship between inner resistivity (or
conductivity) and boundary surface voltage is
governed by the nonlinear Laplace equation
with appropriate boundary conditions so that
it is impossible to obtain the closed—f{orm
solution for the resistivity distribution. Hence,
the internal resistivity distribution of the
unknown object is estimated using the
boundary voltage data based on various
reconstruction algorithms.

Yorkey et al? developed a modified
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Newton— Raphson (mNR) algorithm for a
static EIT image reconstruction and
compared 1t with other existing algorithms
such as backprojection, perturbation and
double constraints methods. They concluded
that the mNR reveals relatively good
performance in terms of convergence rate
and residual error compared to that of the
other methods.

However, in real situations, the mNR
method is often failed to obtain satisfactory
images from physical data due to large
modeling error, poor signal to noise ratios
(SNRs) and ili—conditioned (ill—posed)
characteristics. That is, the ratio between the
maximum and minimum eigenvalues of the
information matrix (or Hessian matrix) is
very large. In particular, the ill—conditioning
of the information matrix results in an
inaccurate matrix inverse so that the
resistivity update process is very sensitive
to the modeling and measurement errors.

The dynamical reconstruction algorithm
proposed in this paper is based on the state—
space representation of the dynamical EIT.
The state of the system, i.e., the resistivity
distribution, is re—estimated after the voltage
measurements corresponding to each current
pattern. We can thus obtain reconstructions
31 times faster than with the conventional
methods (when 31 current patterns with 32
electrodes are used). The method is based
on the formulation of EIT as a state—
estimation problem and the recursive
estimation of the state with the aid of the
Kalman filter”®’.

In this paper, we develop a modified
extended Kalman filter algorithm with a
time—varying linearized model to track fast
changes of impedance in dynamic EIT. The
Kalman filter approach has been used here,
since 1t is capable of producing estimates
after the injection of each current pattern.
We evaluate the performance of the proposed
algorithm by simulations.

. MATHEMATICAL MODEL OF EIT

2.1. The Forward Problem

When electrical currents [I,({/=1,---,L) is
injected into the object Qe R® through
electrodes ¢(/=1,---,L) attached on the
boundary dQ and the resistivity distribution
p(x,y) is known for the € , the
corresponding induced electrical potential
u(x,y) can be determined uniquely from the
nonlinear Laplace equation which can be
derived from the Maxwell equation, Ohm’s
law, and the Neumann type boundary
condition. The complete electrode model
takes into account both the shunting effect of
the electrode and the contact impedances
between the electrodes and tissue. The
equations of complete electrode model are

V-(p'Vu)=0 in Q (O

Lp”g—:d5=l,, [=1--,L
(2)

d
u+z,p"£=U, one, =1L

p"a—u=0 onE)Q\LLJe

on .I=l '

where z, is effective contact impedance
between [/ th electrode and tissue, U, are
the measured potentials and n is outward unit
normal. In addition, we have the following
two conditions for the injected currents and
measured voltages by taking into account the
conservation of electrical charge and
appropriate selection of ground electrode,
respectively.

1,=0- 3)

!

[N

1
L
ZU, =0 (4)
=1

The computation of the potential u(x,y)
for the given resistivity distribution p(x,y)
and boundary condition [, is called the
forward problem. The numerical solution for
the forward problem can be obtained using
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the finite element method (FEM). In the FEM,

the object area is discretized into small
elements having a node at each corner. It is
assumed that the resistivity distribution is
constant within an element. The potential at
each node is calculated by discretizing (1)
into Yu=c . where Ye RY" is so-called
stiffness matrix and N is the numbers of FEM
nodes. Y and ¢ are the functions of the
resistivity distribution and the injected
current patterns, respectively.

2.2. The Inverse Problem

The inverse problem, also known as the
image reconstruction problem. consists in
reconstructing the resistivity distribution
p(x,y) from potential differences measured
on the boundary of the object. In the past,
several EIT image reconstruction algorithms
for the current injection method have been
developed by various authors. A review of
these methods 1s given in'"". To reconstruct
the resistivity distribution inside the object.
we have to solve the nonlinear ill—-posed
inverse problem. The regularization
techniques are needed to obtain stable
solutions due to the ill—posedness.

Generalized Tikhonov regularized version
of the EIT inverse problem can be written in
the form

®(p)=min|V ~U(p) | +axl| R(p - ")} (3)

where pe RY and p° are the resistivity
distribution and a priori information of p,
respectively. U(p)e R™ is the vector of
voltages obtained from the model with known
p. Ve R"are the measured voltages and
R and a are the regularization matrix and
the regularization parameter, respectively. L,
K, and M are the numbers of electrodes on
the surface. injected current patterns, and
finite elements in FEM respectively. There
are many approaches in the literature®™ ' 1o
determine R and a. but the usual choice is
to fix R=1, and to adjust o empirically.
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In the linearized approach, U(p) s
approximated with the first order Taylor
polynomial at p, as

Up)=U(p,)+J(p) (P~ P,), (6)

and J(pyL U@

dp

e RLKx.\'

p=p,

where p,

are the resistivity distribution at time ¢ and
the Jacobian of U(p)e R™ calculated in p,.
respectively. We can write (6) in the form

U(pl) =(Ul,/"”’UK,l )r’ J(pl) =(JI,I’“.’JK.I )T

(7

where U, CU(p)e R and
J,CJ(pye R*Y forall k.In (7). the kth
block corresponds to the current pattern /, .
In a dynamical situation. the measurements
U,,-,Ug, do not correspond to the same
impedance distribution since the distribution
changes over time during the measurement
cycle. We however, that the
evolution of the impedance is so slow that the
measurements that correspond to a single
current pattern can be taken to be
approximately from the same distribution.
This is a qualitative requirement. in exact
terms this would mean that we have an EIT
system that is capable of parallel voltage
measurements. Let the current pattern at
time t be / so thatitis one of the patterns
I,--,I, . The corresponding measurement
voltages at time ¢ are defined by
Vey=(¥,t).--.Vy (1)) . The observation
equation at time t can be written in the form

Vk(t)=Uk(plu)+Jk_!U(pl—pl”)+w'l (8)
where p, is the resistivity distribution at
time f, and w, is the measurement noise,
whose covariance is denoted by .

If we define a variable y, as follows,

y{ Vk(r)_Uk (pr¢‘)+‘lk.top1(,
then a new observation equation can be
written as

assume.
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yl =Jk./,,pl+wl (9)

Furthermore, a pseudo—measurement vector
and matrix are augmented by (10) to
consider the regularization term in (5).

. y/ ‘/k.to
y, L b H U (10)
JaRp JoR
We describe the evolution of p, with the

discrete—time model using nonlinear mapping

P =G(p,) an

G(p,) also can be approximated with the
first order Taylor polynomial at P, as

G(p,)=G(p, ) +G (p,.)p, - p)+O(p, - o)

(12)
If the second order terms are dropped out in
(12) and the result of p, =G(p,_,) is used in
(11). we can describe the time—varying
linearized model (state equation)

6pr+| :E6p1+vl (13)

where &p,,=p, -p, . 8, =p -p. and

EJaG(f) = %, e R™ is the state
" |, oo

transition matrix at time . v, are the state

noise process, whose covariance is denoted
T

by T ,=EWwy, ).

. IMAGE RECONSTRUCTIONS
USING EXTENDED KALMAN FILTER
METHOD

Equations (8) and (13) construct the so—
called state space representation of the
linearized EIT system. Denote the estimate
of p, that is based on the observations
Uip,).---.U(p,) by p, . The most common
recursive estimators of the state p, are
called the Kalman predictor ( p, ), filter
(p, ) and smoother (p, ). A Kalman filter is
formulated when the relationship between
measurements and the state variable is
expressed by a linear function. When the
relationship between measurements and the

state variables is expressed by a nonlinear
function, an extended Kalman filter (EKF)'?
is used, where the nonlinear function is
approximated as linear and the Kalman filter
is applied using this function.

In this paper. we use a modified extended
Kalman filter (MEKF)'® in the form. which
compensates for the influence of error due to
linear approximation.

6pr+hl = F;ilspl,l
. (14)
Fo, =F,B.F,
r r -

KI = Pm—IHm—I (HI,I—l})III—lH”l-I +rw.r)
6pr/ =5pt|l-|+ﬁK1(}TI_Hur—lpl|r-l) (15)
Pm = Bv—l _yzl(:Hm—IRu—l

;08B <1
Y= p A (16)

2-B;1B<2
where
_9G(p)
ot T ’
ap P=Pu

Jk.m—l
H/u—l =

Jar

U
Jk.ll/—l = a (f) N and

p P =P

—_ Vk(t)_Uk(plll—l)+Jk,l|l—|pl|l—|
Vi s/a_Rp'

Let us consider the meaning of coefficient
B here. When B =1, (14) and (15) are the
same as EKF. If the cost function of (5) is
the minimum when f =1, this means that the
nonlinearity of the system is small, and that
error caused by linear approximation is small.
If the position where the cost function (5)
becomes the minimum is distance from B =1,
the error caused by linear approximation is
large.

When ,B =0, the state is not updated even
if new measurements are input. This means
that 1t 1s sufficient to search the position
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where the cost function becomes the
minimum in the range of 0<B<1, with
B =1 at the center. The update value of the
error covariance matrix of (15) is y=1
when fB=1, and y is decreased as
becomes distance from 1.

V. RESULTS AND DISCUSSION

In order to test the proposed algorithm, the
complete electrode model with the finite
element method (FEM) was used to calculate
the measurements ¥V . For the current
injection the trigonometric current patterns
were used. For the forward calculations, the
domain Q is the unit disc and the mesh of
3104 triangular elements (M=3104) with
1681 nodes (N=1681) and 32 channels
(L=32) was used as shown in Fig. 1(a). The
FEM elements are grouped together such
that a total of 776 elements (A=776) with
453 nodes (N=453) were obtained for the
inverse calculations as shown in Fig. 1(b).

The inverse problem was solved using both
the proposed extended Kalman filter (EKF)
algorithm with a time—varying linearized
model and the conventional linearized Kalman
filter (LKF) algorithm with a random—walk
model to compare the resistivity
reconstruction performance. We injected 31
trigonometric current patterns and assumed
that initial resistivity distribution was the
same as background resistivity value (that is,
a priori information p° about the true
resistivity distribution is not used). The
parameters used in solving the inverse
problem are selected as follows:; The
regularization matrix and parameter for both
algorithms are set to the same as R =1/, and
a =0.5. The parameters of the Kalman filter
that were used in the calculations are equal
o T, =10/, for all ¢+, T, =10"1, for all
t and PB,=1, . The scaling factor
coefficients in MEKF are =09 and
Y =09 . In the reconstruction the voltage
mapping was linearized at the time average of
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the resistivity distribution. These values
were 300 Qcm for the background and 600
Qcm for the target.
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(a) (b)
Fig. 1. The finite element mesh used in the
calculations.
(a) mesh for forward solver,
(b) mesh for inverse solver.

Figure 2 show reconstructed dynamic
images using the LKF and EKF algorithms.
The true targets in both figures consist of
one insulator rod as shown in Figs. 2(a). A
45° rotated insulator rod was appeared
every 8 current patterns. Figs. 2(b) and Figs.
2(c) were reconstructed by the conventional
LKF algorithm with a random-—walk model
and the proposed EKF algorithm with a time—
varying linearized model. The images from
the LKF algorithm in Figs. 2(b) showed
uniform internal lavers and a blurred object
than that in Figs. 2(c). In contrast, the
images from the EKF algorithm in Figs. 2(c)
have an accurately reconstructed the location
and size of the insulator rod. This implies
that modeling time—varying linearized
function accurately helps to improve the
performance of reconstruction algorithms.

VI. CONCULSION

In this paper, we developed an extended
Kalman filter algorithm to obtain accurate
reconstruction images that are capable of
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faster tracking of impedance changes. For
the evolution of resistivity distribution p, at
time t, we use a time-—varying linearized
model instead of random-walk model. The
proposed algorithm has better reconstruction
performance than the conventional linearized

<8 step of 1* frame> <32 step of 1* frame>

. “ .

<8 step of 2™ frame> <32 step of 2" frame>

<8 step of 2" frame> <32 step of 2™ frame>

(b)

Kalman filter scheme with a random—walk
model at the expense of increased
computational burden. Further extensions
include a more appropriate state evolution
model and adaptive mesh grouping method
for accurate image reconstructions.

<8 step of 2™ frame> <32 step of 2™ frame>

(c)
Fig. 2. Reconstructed dynamic images using
the FEM. model.
(a) The original images.
(b) Reconstructed images by LKF,
(¢) Reconstructed images by EKF.
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