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The Onset of Natural Convection in Horizontal Fluid Layer
Heated Uniformly from Below
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ABSTRACT

The critical condition of the onset of buoyancy-driven convective motion of uniformly heated horizontal fluid

layer was analysed by the propagation theory. The onset time is obtained as a function of the Rayleigh

number and the Prandtl number. Qur theoretical results predicted the experimental results. quite reasonably.
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I . Introduction

When an initially quiescent fluid layer is heated
from below with a certain Rayleigh number
exceeding critical value, the buoyancy-driven
convective motion occurs. This convective motion
driven by buoyancy forces has attracted many
researcher's attention from the beginning of this
century. It is well-known that buoyancy-driven
convection plays an important roles in many
engineering problem. such as chemical vapor
deposition, solidification, electroplating and also
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many other conventional processes involving heat
and mass transfer. Most of these processes involves
non-linear, developing temperature profiles and
therefore it is one of the most important problem to
predict when or from where the buoyancy-driven
motion sets in.

Choi et al! proposed the propagation theory to
analyse the buoyancy-driven convection phenomena.
In their analysis, they introduce the thermal-
boundary layer thickness as a new length scaling
factor and transformed disturbance equations
similarly under the linear stability theory principle
of exchange of stabilities. In propagation theory, the
onset conditions are defined as the conditions that
the fastest growing disturbances start to grow
rapidly. Their predicted results compared with
experimental data of initially quiescent horizontal
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fluid layersm. initially quiescent fluid-saturated
horizontal porous fluid layers”, laminar-forced
convection flow", and laminar-natural convection
flow”, reasonably well.

In this study we consider the buoyancy effects in
horizontal fluid layer heated from below. Here will
be analysed the onset condition of buoyancy-driven
convective motion and compared the predicted value
with available experimental data.

il . Stability Analysis

2.1. Governing Equations

The system considered here is a Newtonian fluid
with an initial temperature 7T; confined by two
infinite parallel plates. The fluid layer of depth "d”
is heated from below with constant flux g¢,. The
upper boundary is kept at initial temperature T
The schematic diagram of the base system is shown
in Fig. 1. For this system the governing equations
of flow and temperature fields are expressed by
employing the Boussinesq approximation, as follows:

v-U=0 1))

{_g? +0- v}‘(j:—pL v P+ iU+ g8TE (2)

{%fc’;- JT=av?T (3

where U, T, P. . a. g o and B represent the
velocity vector, the temperature, the pressure, the
viscosity, the thermal diffusivity, the gravitational
acceleration, the density, and the thermal expansion
coefficient, respectively. The subscript "r” represents
the reference state.

The important parameters to describe the present
system are the Prandt] number Pr and the Rayleigh
number based on the bottom heat flux Ra, defined
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Fig. 1 Schematic diagram of base system

by

Pr= and Ra,= i%qwi (4)

Qe

where k and v denote the thermal conductivity and
the kinematic viscosity, respectively. Re, is
sometimes called the dimensionless heat flux. In case
of slow heating the basic temperature profile is
linear and time-independent and its critical condition
is independent of Pr and represented by

Ra , .= 129% (5)

But for a rapid heating system of large Ra, the
stability problem becomes transient and complicated.
and the critical time £. to mark the onset of
buoyancy-driven motion remains unsolved.

For the conduction state the base temperature
field can be governed by the following dimensionless
forms:

98, _ 9%,

az_ 322 (6)

with the following initial and boundary conditions.

6,=0 at r=0and z=1 (7.2)
S o1 at 2=0 ()

where r=d%/(al), z=Z/d and 8,=KT— T)/q.d.
The subscript 0 denote the base state. The Graetz-

175



Min-Chan Kim and Myung-Taek Hyun

type solution of base temperature field can be
obtained by employing conventional separation of
variable technique as follows:

=1-2-2 3 L cos(u,2)exp(—u2d (8)
n=1 My

where #,=(n—1/2)x. For deep-pool systems, the

Leveque-type solution can be obtained as follows®:
2
Oy = 4r{exp( L)—{erfc{%)} (9)

where &=2/Vz. The above equation is in good
agreement with the exact solution (8) in the region
of 0.1

Since we are primarily concerned with the

deep-pool case of large Raz,and small z the above
Leveque type solution (9) represents the basic
temperature profile quite well. Although the above
Leveque-type solution represent the base temperature
profile, for the

mathematical convenience we

introduce the dimensionless variable 6;:

¢9;,=7"lr (10)

Then the base temperature field within r<0.1 can
be transformed to
&6, + £ 4y 1

a2 T2 T2 6,=0 (1)

with the boundary conditions

doy(0)
—dt =0 and

Gy(0) =0 (12
The solution of equation (11) satisfying equation
(12) can be obtained by conventional numerical
scheme and is the same as the base temperature
profile of equation (9).
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2.2. Stability Equations

Under the linear stability theory disturbances
caused by the onset of thermal convection can be
formulated, in dimensionless form, in terms of the
temperature component &; and the vertical velocity
component w; by transforming equations (1) ~
(3):

{%%_ ?2} 72w1=— ;1201 (13)
%6:‘ + Ra,un—2 a = v,% (14)

- 2 2 2 —_
where v —g—x2+g—yz a and v j°=

2 2
g_;;‘*+g_f' Here the velocity component has the

scale of a/d and the temperature component has

the scale of av/(g8d%).
conditions are given by

The proper boundary

w,=?=¥=0 at z =90 (15.2)
wl=%=0,=0 at z = (15.b)

Our goal is to find the critical time r. for a given
Pr and Ra, by using equations (13) ~ (15).

Based on the normal mode analysis, convective
motion is assumed to exhibit the horizontal
periodicity. Then the perturbed quantities can be
expressed as follows:

[w\(z,2,v,2), 0,(z, x,v,2)] 16
=[w (r,2),0z, 2)lexp[i(a,x+a))

where “i” is the imaginary number. The horizontal

wave number “a” has the relation of

a=[a?+a?]'"". Based on the scaling relation, the

following relation is assumed:
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boundary layer thickness.
With the above

amplitude functions of most dangerous mode are

where the dimensionless thermal

reasoning the dimensionless

assumed to have the form of

[w, (r,2),6(r, D)= [rwi(), 6;(D] (18)

By using these relations the stability equation is
obtained from the equations (13) and (14) as

[ (DP- Y+ _21P_r (¢DP—a"'tD+ 2a°')}w' =-a"¢
(19)

(D2 +-%- tD— a")e‘ = Ra"w' Do, (20)
where a"=aVr, Ra"=Ra,” and D=d/dt. For
the the
equation (15), are transformed as follows:

deep-pool case, boundary conditions,

w=Dw'=D8 =0 at =0 (21.a)
w=Dw'=0"=0 as {—oo (21.b)
It is assumed that «° and Ra" are the
eigenvalues, and also the onset time of

buoyancy-driven convection for a given Ra, is

unique under the principle of exchange of stabilities.
The the
propagation theory. Our propagation theory relaxed

above procedure is essence of our

frozen-time mode! by considering the terms involving
a( - )/dr in equations (13) and (14).

2.3. Stability Analysis Results

In the limiting case of infinite or zero Prandtl
number. the governing equations are reduced to
simpler form because the inertia or viscous terms
are negligible, respectively. For this limiting case,
Lee et al” analysed the stability conditions. They
approximate  base  temperature  profile  and
disturbances distributions by using integral method
infinite Prandtl

number case, our results are compared with Lee et

and WKB approximation. For
al’s reults in Table 1. It shows good agreements
between their critical conditions and ours. This
means that our numerical scheme is quite favorable
to analyse the stability equations.

Table 1 Comparison our critical conditin with Lee
et als for the liminting case of Pr

Prow Pr—>0
Present Study 20.03 -
Lee et al. 20.88 859/Pr

For finite Prandt! numbers, the critical values of
a. and Ra. are summarized in Table 2. Based on

these results and Lee et al’s result for Pr—0, the
critical condition can be represented as:

Ra:=20.03[1+(-Q‘154;3-)2/3]3/2 (22)

Ra.
in Pr, and the Pr effect on critical conditions is
Pr=10. The Pr effect becomes
pronounced for Pr<1. This means that the inertia

It seems evident that increase with decrease

negligible for

terms make system more stable. Very viscous liquids

Table 2 Numerical values of critical conditions for the various Pr

Pr 0.01 0.1 0.7 1 7 10 100 ®
Ra; 1122.30 158.64 45.90 39.04 23.36 241 20.29 20.03
a; 0.73 0.73 0.67 0.66 0.57 0.56 0.52 0.52
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are used in experiments of Nielsen and Sabersky®.
and Chu”. The Prandtl numbers of the fluids used
in their experiments are 45~4700 and 4x10°. As
mentioned above, the critical conditions are nearly
independent of Pr for Pr=10, so we adopt the
infinite Pr case as the basis of the comparison
between theoretical and experimental results. For
infinite Pr case, the stability criteria can be
expressed as follows:

7.=4.4TRa;"? and a.=0.25Ra* ()

The above results is compared with the experimental
data of Nielsen and Sabersky® and the theoretical
results of Kim and Kim' in Fig. 2. As shown in
Fig. 2, our r. is lower than the experimental data,
however Kim and Kim's results shows fairly good
agreement with experimental data. This discrepancy
is due to the difference in the definition of critical
condition of each study. We define r. as the time
that infinitesimal disturbances start to grow
exponentially, but Kim and Kim'” as the time that
the Nusselt number is increase 1% with respect to

10' g
° Experiment
[ O Nielsen and Sabersky®
18 'y Predictions
10°F g0, — Equation(23)
-------- Equation (24)
By, i
L10'E
o
107 F
10-3 L0
10° 10°

Fig. 2 Comparison of critical conditions with
Nielsen and Sarbersky's data®
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that of conduction state. It can be assumed that a
certain time is required after the onset of
disturbances to amplify the disturbances to affect
the Nusselt number. This may explain the difference
between our critical time and Kim and Kim’s.
Foster'” proposed that the onset time of natural
convection obtained by using the thermal boundary
layer thickness as a length scaling factor should be
too short by factor of 4. By accepting Foster's
concept, we suggest that the disturbances set in at
7. will lead to manifest convection at 4r.. Thus, it
is assumed that the onset time when the convective
motion can be detectable experimentally, 7, can be

given as follows:

7,=17.92Ra; " (24)

The above relation is compared with Nielsen and
Sabersky's experimental works in Fig. 2.

Another experiments were conducted by Chu”. He
represents his experimental data as Ra vs. Ra,
plot. For convenience of comparison, we reconstruct
our stability condition by using the following
relation obtained from base temperature profile

’;"Z =45z (25)
as
Ra,=2.39Ra;** (26)

where Ra,. is the critical Rayleigh number based on
temperature difference between two plates. In Fig. 3.
Chu's experimental results are compared with the
theoretical results of ours and Kim and Kim's'?.

As shown in Fig. 3, our critical condition
represents the incipient motion criteria fairly well,
whereas Kim and Kim's results show good
agreement with Nu;, criteria. It is assumed that

incipient motion criteria have nearly same physical
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meaning of the present . and N, criteria are

related with critical condition of Kim and Kim's.
From the Chu's visualization results. we can obtain
very important information on the growth of
disturbances. When the horizontal fluid layer is
heated from below, a certain time is required to
make the buoyancy-driven convection set in. Once
the disturbances set in, they grow continuously and
affect the Nusselt number. The Nusselt number
follows conduction state to a certain time after
onset of disturbances, and deviates from conduction
state. And further time is required to show
minimum point and undershoot.

Predictions
Equation (26)
e Kim and Kim'®

Ra,

10*
9 Experimental Criteria®
o Incipient motion
s Nu_

10* 10° 10° 10
Ra‘l

Fig. 3 Comparison with critical conditions with
Chu's data®

Chu's MNu,, criteria have good agreements with

Nilsen and Sabersky's results. From this, it can be
assumed that Nielsen and Sabersky's criteria
correspond to Chu's Nu,, criteria. From these, it

seems evident that the disturbances set in at the
present ., and grow enough to show the minimum

point of the Nusselt number around 4r. and that
slightly after 4r. the Nusselt number increase 1%

with respect to conduction state.

Iv. Conclusion

The critical condition of the onset of
buoyancy-driven motion of uniformly heated
horizontal fluid layer has been analysed by the
propagation theory. It is interesting that our
theoretical predictions have close agreement with
experimental results. Therefore, it may be stated
that our propagation theory is a powerful tools to
examine the buoyancy-driven phenomena in

horizontal fluid layers.
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