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Stability analysis of an initially, stably stratified
fluid subjected to a step change in temperature
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ABSTRACT

The onset of convective instability in an initially quiescent, stably stratified fluid layer
between the two horizontal plates is analysed with linear theory. The layer is heated suddenly
from below, subjected to a step change in surface temperature. The dimensionleSs critical time
T. is to mark the onset of Rayleigh—Benard convection is obtained numerically by using

propagation theory. The results show that disturbances manifest themselves around

comparison with available experimental data.
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I. INTRODUCTION

When a fluid layer confined between two
the horizontal plates is heated rapidly from
below, Ra{fleigh—Benard convection can set
in at a certain time due to buoyancy forces.
In this transient—heating system the
important problem is to find the critical time
to mark the onset of convective motion.

The system considered here is sketched
in Fig. 1. Initially the quiescent fluid layer of
depth dis stratified stably with temperature
T =T, at the vertical distance Z=0 and
T'=T,(2T;). Starting from time t=0, the
bottom boundary is heated uniformly at a
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higher temperature T,. For small time the
base temperature profile of heat conduction
will be nonlinear and time—dependent. The
important parameters in this thermally
developing system are the Rayleigh number
Ra ( =gPBATd’ /va ), the Prandtl number
Pr ( =v/a) and the temperature ratio
Yy (=(T,-T)AT,-T,) ). Here g, B, AT, v
and a denote the gravitational acceleration,
the thermal expansivity, the temperature
difference across the boundaries (=7, —T,).
the kinematic viscosity. and the thermal
diffusivity, respectively. The object of this
study is to find the dimensionless critical
time 7. to mark the onset of convective
instability for a given Pr, Ra and y. Here
T (=at/d*) denotes the Fourier number. We
will employ propagation theory, which is
based on the assumption that temperature
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disturbances at 7=1, would be propagated
mainly to the thermal penetration depth of
conduction state. The present results will
complement Kim et al.’s? work.

Il. PROPAGATION THEORY

For the present system the
dimensionless basic temperature
8, (=(T, - T,)AT, - T,)) of the conduction state
can be obtained

= sin(nnz)
n=| n

exp(—nzn"t) (1)

8, =(1-v)i- z)—

8, =-Y(1-Lv1)
4 n+l § (2)
+2{erf —J—_—+—]— erft 7;——'2—]}

where z=2Z/d and §=z/\/‘? Here to
denotes the basic temperature. Equations (1)
and (2) yield the same temperature profile
but have the different coordinates.

Under linear theory the perturbed
quantities are expressed in terms of the
temperature component 0, and the vertical
velocity component w, as

19 .
(Pra‘r+v )V w, =V6, (3)
09
?'+Ra WIEO-=V29' (4)
Xy rigid
M Q :
24 rigid
Ti T

Fig. 1. Temperature profiles in conduction
state.

where V! denotes the horizontal Laplacian.
Here W, has the scale of a/d and 6, that of
av/(gBd’) . The proper boundary conditions
are given by

w,=ﬂ-=9,=0 at z=0 and 1 (5)
oz

which represent no slip and isothermal

heating on the boundaries.

For small T the dimensionless amplitude
functions of disturbances are expressed
under the normal mode analysis, based on the
balance between the viscous and buoyant
forces in the z—component of motion [1] :

[w,(t,x,y,2)8,(t.x,y.2)] ®
=[ow" ©)0" ©explifa, x +a,y)]

where [ is the imaginary number and a,
and a, denotes the wavenumbers. With
y=0, substituting Egs. (6) into (3) and (4)
yields

(07— fw’

(7
LI:ED}W. —sa'sz‘ +a'2w']
Pr{2 2

=a"0 -
(Dz—a'z)i' =—%D€)°+Ra'w'Dﬁ0 (8)

where D=d/d{. a’'=1""a, a="a +a; , and

Ra' =1"'Ra. Here a" and Ra’ are assumed
to be eigenvalues. This makes it possible to
produce the above self-similar equations
including @, (=erfc({/2)) from Eq. (2) as a
function of §(= z/~/_)) only because the
upper boundary is replaced by C(—I/J_) — oo
for small 1. Now, the minimum Ra  —value
are obtained numerically. From characteristic
values the critical time <t and the critical
horizontal wavenumber a, are obtained for a
given Ra. Also, the critical Rayleigh number
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Ra, may be obtained at each 1. This means
that t© may be fixed as 1. but { varies in
the stability equations.

The above procedure is extended to the
case of y>0 and also to that of large 1. As
shown in Eq. (2), the resulting equations are
not self—similar. But we fix 1t as 1, in Eqgs.
(5), (7) and (8). Now, for a given 1, y and
Pr the minimum Ra-—value Ra, is found.
Therefore the propagation theory introduced

above is a kind of relaxed frozen—time model.

and an accurate estimation of the spatially
varying thermal conductivity is necessary in
many thermal management systems. Also,
this kind of problem may be encountered in
geological waste disposal and also have
applications in petroleum field and aquifer
analysis.

. RESULTS AND DISCUSSION

The dimensionless critical time 1T, to
mark the onset of convective instability has
been obtained by propagation theory. Figure
2 shows that the system becomes more
stable as ¥y
decreases. For

increases and as Pr

Fig. 2. Effect of the temperature ratio ¥ on

the critical time 7,.
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large 1., Ra, approaches the well-known
value of 1708/(1-Y), independently of Pr. For
large y -—value both the muitiple—cell
patterns and the behavior of subcritical state
are exhibited, producing the minimum Ra, -~
value in the plot of Ra, vs. 1. For y21 the
instabilities will disappear with increasing
time and the system becomes unconditionally
stable as 1> . For deep—pool systems of
small 7, the stability criteria are summarized
in Kim et al’s" work. Ueda et al.?
conducted experiments of
Ra =9000~17000 , y=0.73~1.67 and Pr=28800
obtained the characteristic time 1,, to mark
the detection of manifest convection.
Comparison with the present predictions
vields  the relation of 1, =4t for
YRa™'? <0.03, as shown in Fig. 3. Here their
predictions from the amplification theory are
also compared. The significant deviation of
41_-—values from the last two data may be
caused by ¥y >1lin experiments.

0.804 ;43519

T, =7531+(——)"*1""Ra "’ (9)
Pr

T M ¥ e T
120 + Predictions with Ra=15,000 -
propagation theory

100 Ueda et al. [2]
r O experiments
80 F - amplification theory 1
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Fig. 3. Comparison of present predictions
with Ueda et al.’s? results for a given Ra.
With y=0 the present predictions fit

would manifest itself at
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for 1, <0.01within the error bound of 5%. It
has been reported 49 {hat convection

t=1, with the relation of 1, =41, (10)

because incipient disturbances at t=1, must
grow with time. The <, predicted by the
amplification theory”"'_’) and the stochastic
model® also yield the above relation when
1, ~values is obtained from Eq. (9). Patrick
and Wragg” measured the individual mass
transfer coefficient with time in
electroplating systems, which correspond to
those of Pr>2,000. Figure 4 shows that their
undershoot times are well represented by the
relation (10). The undershoot time indicates
the minimum Nusselt number Nu in the plot
of Nu vs., T.

¥Y=0
o undershoot time
107 3 o o Patrick & Wragg (7] 3
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) o T propagation theory]
NEe)

10,3 - o 41: .

Lo N
0 F . 3
i N 3
[ S 4
(10.5 Er N ?

10° Ll v s i ssisind i R
10* 10° 10° 10’ 10" 10° 10" 10"
Ra

Fig. 4. Comparison of present predictions
with experimental data of Patrick and
Wragg'' for a given Ra.

IV. CONCLUSION

Even though propagation theory is a
rather simple model, it seems that the
resulting stability criteria are consistent with
experimental measurements. The present
results show that the infinitesimal
disturbance sets in at T=7,. and for large
Pr —systems it grows until detected around
7 =41, . It is interesting that the propagation
theory can be applied to the stability analysis
of diffusive systems without the loss of
generality,
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