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Introduction

In this review paper. we study repeated games in which players observe a public
outcome which imperfectly signals the actions played. In this class of model. players
cannot observe the other players  actions directly. but can observe imperfect and public
signals about them. Obviously. the probability distribution over public outcomes depends
on the players  actions. Thus. these are repeated games of moral hazard. Abreu. Pearce
and Stacchetti (1990) and Fudenberg. Levine and Maskin (1994) have developed a
beautiful and powerful set of solution concepts for these games. This is a rich class of
problems with many significant economic implications. We illustrate a few examples In
this class on games. The first example is the Cournot oligopoly (Green and Porter. 1984).
in which firms sell output unobservably and the market price is a publicly observed
outcome which is a stochastic function of total supply. The second example is the “noisy
prisoner's dilemma” game. Players choose from their action set {Cooperation. Defection:.

But. they do not observe their actions. but receive some noisy signal of their actions
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instead. The third example is the “partnership” game. There are two partners. i=1.2.
each of whom has two unobservable actions. “work™ or “shirk”. The stochastic
distribution of publicly observed outcome depends on action profile chosen by players.
The fourth example is the game of “reputation” for quality. A single firm sets price p
and chooses an effort e, at some cost c(e,).

The publicly observed product quality is the stochastic function of effort level. Product
quality is "High™ with probability p(e.). where p is increasing in e, Consumers are
willing to pay for high quality. The fifth example is the “Consumption smoothing and
insurance (Green. 1987). There are a continuum of consumers. who each period get
privately observed income shocks z. They then report their publicly observed incomes
and make transfers among themselves. Transfers must be balanced. The final example is
the self-enforced agency contracts (Levine, 2000). Each period t. the agent privately
observes a cost parameter @. and produces output y: at cost c¢( 8.y). The output. but

not the cost. is observed.

The Model

Consider the following stage game:

® There are n players. Each player i=1...n chooses an action a; from a finite set A
We call vector aEA= %;-|"A; a profile of actions.

* Profile a induces a probability distribution over public outcomes yEY, where Y is a
finite set. Let x(yla) the probability of y given a.

* Let ria.y) be player i's payoff if he plays a; and the public outcome is y. Player i's
expected payoff is defined as: gi(a) = Zy=y 7 (yla)ri(aiy).

* Player i's mixed strategy is @i€A(A;), where A(A;) is the set of player i's possible
mixed strategies. For a mixed strategy profile «. player i's expected payoff is defined

as gi(a) =2yey2aca 7 (yvla) @ (a)rilaiy).

In the Cournot oligopoly. a; is firm i's quantity produced. while y is realized price. In
the noisy Prisoner's dilemma game. a; is player i's intended action. while y 1is actual
action.

Following convention. let V be the convex hull of the set of feasible payoff vectors
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{g(a) = (gi(a)...gn(a))laEA!. Let vi=mine-maxagi(a.-) be player i's minimax value.
The payoff vector v is individually rational if v is greater than ¢ ; for all player i. Let
V' ={vEVlvi> v; for all ii be the set of feasible. individually rational payoffs. The Folk
Theorem for the case of observable actions asserts that any individually rational payoff
vector in V' can be obtained by an equilibrium of the repeated game if the discount
factor is sufficiently close to one.

Let's turn in detail to the repeated game. in which the stage game is repeated every

period resulting in a public outcome y". The public history at the end of period t is

strategy o; for player i is a sequence of functions {oi'}. where ¢; is a function which
maps each pair(h'_l. h'?) to a probability distribution over A..

Definition 1 A public strategy for player i is a sequence of maps oi : h'™' — A(A).

We focus on public strategies because they are simple and lead to a nice structure for
the game. Each public strategy profile ¢ =( o 1....0.) generates a probability distribution
over histories in the obvious way. and thus also generates a distribution over stage game
payoff vectors. Players discount future payoffs with a common discount factor &. Player
i's objective in repeated games is to maximize the expected value of the discounted sum
of her stage game payoffs. Player i's average discounted payoff for the game if she gets a
sequence of payoffs {g'} is: (1-8):-0" 8 ‘g
This average discounted payoff is measured in the same units of stage-game poyoffs.

Definition 2 A public strategy profile ¢ =(0o1....04) is a perfect public equilibrium(PPE)
if for each time t and public history h'!, the strategies form a Nash equilibrium from

that point on.

This definition allows a player to contemplate deviating to a non-public strategy. but
such deviations are not profitable for her because the other players stick to public
strategies.) This means that a PPE is a perfect bayesian equilibrium (PBE) of the

1) With imperfect monitoring. there are no proper subgames since a plaver may be uncertain as
to which of any information nodes he is at. So SPE might have not been applied. However.
all possible nodes have the same distribution over opponents play since opponents base their
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repeated game since given opponents’ sticking to public strategy. any private information
he has is not payoff relevant. However, if some players are using their private
informations. he might want to use a non-public strategy. This non-public strategy is not
nearly well understood. Note that not all perfect bayesian equilibria are PPEs since PBE
has not a recursive structure. A crucial point of PPE is that after any history h'. a PPE
induces a PPE in the remaining game. In repeated game with perfect observability of
actions played. the set of subgame perfect equilibrium payoffs is stationary in the sense
that it is the same starting from any period t. This story holds true with the set of PPE
payoffs in repeated games with imperfect monitoring.
We look at the model of Green and Porter (1984) with public “trigger strategies:

1. Collusive phase: firms produce qi....qn. If p, is less than the trigger price p‘. then go
the punishment phase 2.
2. Punishment phase: firms produce Cournot outputs (qi‘...q,") for T periods possible

that T=o0). Then return to collusive phase 1.

Above Green and Porter equilibrium is a PPE since strategies are public and play is
Nash from every time forward.2> Note that lower triggers imply less chance of
punishment and more incentive to deviate, while longer punishment periods imply less
incentive to deviate, but less of efficiency. This implies that firms can not achieve the

first-best (monopoly profits) since there will be “price wars” in equilibrium.

Enforceable Actions and Self Decomposability.

Following Abreu. Pearce and Stacchetti (1990) and Fudenberg. Levine and Maskin

(1994), we introduce a powerful set of techniques for characterizing perfect public

strategies on public information. not on private informations. So. there is no need to distinguish
information nodes he is at.

2) In the punishment phase. it is optimal for a player to comply since opponent firms are playing
a Nash equilibrim of the stage game. In the collusive phase, firms must find it optimal to play
qc because increasing output increases single perid profits. but raises the probability of
punishment being triggered.
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equilibrium. In contrast to the Green and Porter analysis, we will think not in terms of
strategies. but in terms of payoffs. The idea is that to “obtain™ some individually
rational payoffs(some vEV'), we should enforce certain actions at time t. which results
in some public output to which we will attach continuation payoff from time t+1. We
can think of this as an analogue to the principal-agent problem. where to induce the
agent, the principal promised certain rewards and punishments in advance. The subtle
difference here is that the promised rewards and punishments must correspond to payvoffs

in a PPE of the continuation game.

Definition 3: Let 6 and WER" be given. Profile @ is enforcible with respest to W and
8 if there exist vER" and a function w : Y — W such that, for all i.

(1) vi = (1-8)gi(a) + 6 Zym(yla)wly)
(2) ai € argmaxe; (1-8)g(eai. ai) + S Zyx(ylai. a)wily)

where wi(y) is the ith component of w(y).

We say that the set {w(y)lyey enforces @ with respect to v and &. and that v is
decomposable with respect to . W. and & : condition (1) is that the target payoff vi
can be decomposed into current payoff gi( @) and the expected continuation pavoff :
condition (2) is essentially an incentive compatibility constraint. These conditions remind

us of Bellman's equation for dynamic programming.

We let B(W.8) be the set of all payoff vectors v such that for some a. (a.v) is
enforceable with respect to fixed W and 6. If WEB(W.S) for some &. we say that W
is self-decomposable. We also let E( 8 ) be the set of PPE payoffs.

Proposition 1: E(8) = B(E(§).8)

Proof. First we show B(E(8).8) is the subset of E(J). Suppose v&EB(E(6).8). Pick
a. w: Y — E(8) such that w enforces (@,v). Now construct the following strategies.
In period 0. play @. Then starting in period 1. play the perfect public equilibrium that
gives payoffs w(ys). This is a PPE. so veE(4).

Lastly we show that E( &) is the subset of B(E(8).8). suppose vEE( ). Then there
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exists some PPE that gives payoffs v. Suppose in this PPE. play in period 0 is . and
continuation payoffs are w(yy)EE( ), since continuation payoffs correspond to PPE
play. The fact that no one wants to deviate means that ( @.v) is enforced by w : Y —
E(d). so vEB(E(4§).8). Q.E.D.

Abreu, Pearce and Stacchetti (1986, 1990) call this factorization. The basic idea is that
for any PPE. the corresponding payoffs can be decomposed or factored into current
payoffs and continuation payoffs. All the continuation payoffs in a PPE correspond to
PPE profiles. So those can be decomposed. and so on. They have a recursive structure.
Proposition 2. If W is self decomposable, then W is the subset of E( & ).

Proof. The hypothesis of self decomposability of W implies that any vEW belongs to
B(W.8). So there exist some w : Y — W and some a such that (a.v) is enforced by
w. We construct a PPE that gives v. In period 0, play «. and for an realized outcome
yo. set vi=w(yo). Then viEWCB(W.8). So again there is some «, and some w; : Y
—W such that (e1vi) is enforced by w; Continuing this way. we obtain the
recommended strategies after each public history such that there are no profitable
deviations. and which by construction give payoff v from time 0.

Above argument implies that E( ) is the largest self-decomposable set.

Examples of Self Decomposability

To capture the main ideas of this review. We first consider the prisoner's dilemma game

with perfect monitoring. The payoff matrix of this game is represented in table 1.

Table 1
Cooperation Defect
Cooperation 11 -1.2
Defect 2,1 0.0

With perfect monitoring. Y = {(C.C).(C.D).(D.C).(D.D)} where C and D are the
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short-hands for cooperation and defect respectively.

Claim If & = 172, the set W = {{0.0).(1.1)} is self decomposable.

Proof. Our goal is show that (0.0)EB(W.8) and (1.1)EB(W.§) for § >1/2. Consider
(0.0) first. The action profile (D.D) and the payoff profile (0.0) are enforced by any 4
and the function w(y) = (0,0) since

)
1l

(1-8)g(D.D) + éwi(D.D)

and for all a,€!C.D),

(1-8)gi(ai.D) + Jwi(a.D): incentive constraint

o
vV

Now we consider (1.1). The action profile (C.C) and payoff profile (1.1) are enforced
by & =1/2 and the function w(C.C) = (1.1) and w(y)=(0.0) for all v=(C.C) since

—
Il

(1-8)g(C.C) + swi(C.C)

and all a;€iC.D} with § >1/2

1 = (1I-8)g(a.C) + dwi(aC).

So W is self decomposable.

Now we consider a simple partnership game. There are two partners. i=1.2. each of
whom has two unobservable actions, “work™(w) and “shirk™(s). There are three output
levels. y=12.8,and 0 which depend on action profile chosen. If both players work the
probability distribution over these levels is (1/3.1/2.1/6): If player 1 shirks and 2 works.
the distribution is (1/3.0.2/3): if player 1 works and 2 shirks. it is (0.1/2.1/2): and if
both players shirk. it is (0.0.1). Each player's ex-ante expected utility is half of expected
output minus the disutility of his effort: work imposes a disutility of 3. and shirk cost 0.
Action profiles (work. shirk) and (shirk, work) induce different probability distributions

over outcomes.

- 27 -



Table 2 represents players’ payoffs matrix depending on action profile chosen.

Table 2
work shirk
work 1.1 -1.2
shirk 2.-1 0.0

Let W be a small ball W in the interior of V. We claim that W is the subset of E
(8) for 8 near enough 1. Then traditional Folk theorem extends to this example game.
Proposition 2 says that if W is decomposable then W is the subset of E(&). To prove
the claim. we only show that W is self decomposable. We want to do this with above
partnership game example. The strategy is that we show the boundary point v of W to
be decomposable. A small ball W is divided into A. B. C. and D. as shown in Figure 1.

L1 D=glwork, work)

Figure 1

Let v be on the boundary on A. To decompose v. choose a={(work. work). To ensure
that w(12). w(8), and w(0) belong to W, we select them to lie along a line P’ parallel
to the tangent hyperplane Pv to W at v (See Figure 1). Here P’ takes the form {(v,.
v2)IBiv' + Bavy = ). To select w(12), w(8). and w(0). we solve the following

system:
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(1) »1=22(1-8)+ § ((1/Dwi1(12) + (2/3)wi(D))
(To prevent player 1 from shirking)

(1) vo=2(1-8)+ S ({1/2)w=(8)+ (1/2)w2(0))
(To prevent player 2 from shirking)

(i) vi=1-8+ 8§ ((1/3)wi(12) + (1/72) w1 (8) + (1/6) w1 (0))
(player 1's expected payoff)

Above system implies that if & is near enough 1. wi(12). wi(8). wi(0)) will lie near the
intersection of P° and the line through g(a) and v. and so will lie in W. Using the fact
that continuation payoffs lie in P". we can replace each w2(y) in (2) by (c-B1wi(y))/ 8-

Finally we rewrite (1)-(iii) as equalities to obtain

173 0 273 wi1(12) (vi-2(1-8))/6
(iv) 0 172 172 w1 (8) (B 2(1-8)-va)+cé
173 172 1/6 wi(10) (vi-1+ 8)/6

Note that the matrix in (4) has full rank. So we solve the system to get wi(.).

Self-Decomposability and Extremal Equilibria

Abreu. Pearce and Stacchetti (1990) show that the structure of PPE often can be
simplified by having the players use extremal rewards and punishments. The extremal
points of a compact set WCR" are those points that aren't convex combinations of other
points in W. Not all boundary points are necessarily extreme. All points in W are convex

combinations of the extremal points.

Proposition 3. If ( @.v) is enforceable with respect to & and W. and W is compact. then

{a v) is enforceable with respect to the extremal points of W.

Proof(a brief sketch). By the hypothesis of the proposition. there exists a function w: Y
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— W that enforces ( @.v). Then for any realized yEY. we can let w(y) be the convex
combination of extreme points of W. Thus. we could simply replace w(y) with a
randomization over extreme points that gives the same expected continuation payoff.
Q.E.D.

These results imply that to achieve any equilibrium payoff in E( &) we start with some
profole @ and then from the next period play a PPE that gives an extremal payoff.
Likewise to achieve an extremal PPE payoff. we start with some profile @ and then get
another extremal PPE payoff(perhaps the same one). So this equilibrium will move
between maximal rewards and punishments. In symmetric games. Abreu. Pearce and
Stacchetti (1986) define strongly symmetric equilibria to be equilibria where players use
symmetric strategies after every history. In this case. the set of PPE payoffs looks like

Figure 2.

Uz

Vi

U1,

Figure 2

As seen in the above figure. there are only two extreme points in the set of symmetric
PPE. So the extremal result is now very useful. It says that the equilibrium payoffs can
be achieved by switching between v' and v-. giving a Green-Porter style equilibrium( here
profile a corresponds to highest payoff v profile a- corresponds to lowest payoff  ve,

profile a corresponds to intermediate payoff v):

* Phase I: Play a. Go to either phase II or III depending on y.
¢ Phase II: Play a. Go to either Phase II or III depending on y.
® Phase III: Play a-. Go to either phase II or III depending y.
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Like the Green-Porter equilibrium. strongly symmetric equilibria are generally
inefficient. This is because the players can't do the optimal thing in every period: with
positive probability they end up in Phase III doing something inefficient. Abreu. Pearce
and Stacchetti (1990) go on to strengthen their extremal result by showing the following

remarkable theorem. We present it without proof.

Proposition 4. Suppose Yis continuous and has constant support. If v is an extremal
payoff of E(4). then under mild regularity conditions. it must be enforced by extremal
points of E&).

The basic idea is that if v is extremal. then it can be thought of as the solution to
some maximization problem. That is just to find the payoff that maximizes a weighted
sum of the players’ payoffs subject to incentive constraints. The choice variables are the
present payoffs and the continuation payoffs. This turns out to be a linear programming
problem with a convex choice set. These problems always have extremal solutions. and

sometimes, all solutions are extremal.

The Folk Theorem

We have observed that Green-Porter strategies. or strongly symmetric strategies. lead
to inefficient outcomes. Nevertheless. Fudenberg. Levine and Maskin (1994) show that
this inefficiency arises because these strategies limit the space strategies. and go on to
prove a version of the Folk Theorem. Fudenberg. Levine and Maskin's result requires

two “identification™ conditions.

(I) For all i, and a-. the m;=IAil vectors n(ylai'.a-i) are linearly independent.
(IT) For all i. j. there is some profile a such that the |Ajl + |A) vectors ﬂ(y!ai'.a-i)

and 7r(y|aj-.a-j) admit only one linear dependency.?

3) Let IIi{as)=n(-1-.a). We construct (m;+ m;) xm matrix /1;;( @) by stacking
Ti(a-) on top of I7j( a-). Matrix /1;( @) has a linear dependence among its rows.
This is because n(e®la)=3ca aila)n(-la.a-)=Tu-an( - la.a-). In view of this
linear dependence. has rank at most m;+ m;-1.
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The first condition is that all actions of player i can be statistically distinguished. That
is. player i's different actions do not induce the same probability distributions on
outcomes. Furthermore. it requires that Yl > I|Al. which is arguably quite strong
condition. The second condition says that if everyone is playing . then can player i's
actions be distinguished. and player j's actions being distinguished. but also their actions
are distinguished form each other. The second condition is what we need to identify both

aj and g at the same time given some profile played by the others. k=i, .

Definition 4. A set WCR" is smooth if (1) it is closed and convex: (2) it has a
nonempty interior: and (3) at each boundary point v there is a unique tangent

hyperplane P.. which varies continuously with v.
We are in a position to present a version of Folk Theorem as follows.

Folk Theorem : Suppose dim V=n. and condition (I) and (II) hold. Then any smooth
set WCW in the interior of V' there exist some 8 <1 such that for all >6. WCE
(8).

The sketch of Proof. The proof has two steps. Step 1. FLM show that as 5—1. then if
it is possible to enforce some profile « today. then the pair (e.v) can always be
enforced by choosing continuation payoffs that lie along some “tangent hyperplanes.” or
equivalently, along its translates. FLM then show that as &—1. we can fit a translate of
a tangent hyperplane with essentially unbounded variation inside the boundary of the
payoff set. This basically means that e can be enforced as §—1 if and only if one can
find functions relating outcomes to continuation payoffs that enforce @ and satisfy a
particular linear equality.

Step 2. To finish the proof. FLM show that it is possible to find functions that relate
outcomes to future payoffs. that (a) ensure that players will want to play o given
these continuation payoffs. and (b) satisfy a particular linear equality. they show that
conditions (1) and (2) ensure this. Q.E.D.

The Folk theorem applies to payoff vectors in the interior of V.. which implies that we

can't get exact efficiency with imperfect monitoring. The argument is simple and
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illustrative. Suppose that z( - la) has a support that is independent of «. And suppose
that v is extremal but not a satic Nash equilibrium payoff. Because v is extremal. the
only sequence of payoffs that gives average value v must have payoffs v in every period.
So if PPE gives v. the first period strategies must specify a profile « such that g
(a)=v, and the continuation payoffs must be w(y)=v regardless of any realized
outcome. Note that continuation payoffs are independent of today's outcome. So unless «

happens to be a static Nash equilibrium, someone will want to deviate.
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