A note on Minimax Estimators of the Mean of a Multivariate Normal Distribution

Ik-Chan Kim

多學量 正規分布의 平均의 Minimax 推定量에 關한 小考

金 益 蒼

Summary

In this paper, we treat the condition of minimax estimators for the mean vector of p-variate normal distribution and consider the class of admissible for arbitrary definite and covariance matrix.

1. Indtoruction.

Consider the problem of estimating the mean of $p \ge 3$ variate normal distribution. Stein has shown that the best invariant estimator of p-dimensional normal mean was inadmissible for $p \ge 3$ and it became admissible for $p \ge 2$. In this paper, we treat good classes of minimax estimators for location vectors of certain symmetric densities and a class of admissible minimax estimators for arbitrary definite matrix Q and covariance matrix 2.

Let $a_i > 0$ $(i=1,2,\ldots,p)$ be known positive constants. If $x=(x_1,\ldots,x_p)^t$ is a p-dimensional vector, the fine $|x|_1^2 = \sum_{i=1}^p x_i^2$, $|x|_2^2 = \sum_{i=1}^p x_i^2/a_i$, and $|x|_3^2 = \sum_{i=1}^p x_i^2/a_i^2$.

Let $X=(X_1, \ldots, X_p)^t$ be an observation from a p-dimensional density of the form $f(|x-\theta|_2^2)$, here

 $\theta = (\theta_1, \dots, \theta_p)^t$ is an unknown location vector. Assume the loss incurred in estimating θ by δ is $|\delta \cdot \theta|^2$

For a measurable estimator $\delta(X)=(\delta_1(X),\ldots,\delta_p(X))^{\frac{1}{4}}$, define the risk function $R(\delta,\theta)=E_{\theta}|\delta(X)-\theta|_1^2$, where E_{θ} is the expectation under θ . Then the best invariant estimator of θ is $\delta_0(X)=X$ and it is known that δ_0 is a minimax estimator under squred error loss. Furthermore, δ_0 has constant risk. An estimator δ is minimax if $\Delta_{\delta}(\theta)=R(\delta_0,\theta)-R(\delta,\theta)>0$.

2. A class of minimax estimators.

Let consider the estimators are given componentwise by

(1)
$$\delta_i(X) = (1-r(|X|_3^2)/|X|_3^2 a_i)X_i$$

and density of the form with respect to Lebesque measure

(2)
$$f(|x-\theta|_2^2) = \int_0^\infty (2\pi)^{-p/2} \sigma^{-p} \left(\prod_{i=1}^p a_i^{-1/2} \right) \exp[-|x-\theta|_2^2/$$

 $(2\sigma^2)$] dF (σ), where F is a cdf on $(0, \infty)$.

Theorem 1. A density $f(|x-\theta|_2^2)$ is of the form (2) if and only if f is completely monotonic in $(0, \infty)$.

Proof. Define $t=1/(2\sigma^2)$, $s=|x-\theta|_2^2$, and G(t)=

 $-\int_0^t c(2v)^{p/2} dF(1/(2v)^{1/2}).$ Then G is positive and nondecreasing t and $f(s) = \int_0^{\infty} e^{-st} dG(t)$ is the form of Laplace transforms if and only if it is completely monotone.

Theorem 2. Let $f(|x.\theta|_2^2)$ be a density and X an observation from p-dimensional density of form (2), where $p \ge 3$. Assume $E_0 |X|_1^2$ and $E_0 |X|_1^2$ are finite. If f satisfies

i) The set points W in (0,∞) at which f(•) is discontinuous has Lebesque measure zero.

ii)
$$c=\inf_{s\in U} \frac{\int_{s}^{\infty} f(v) dv}{f(s)} > 0$$
, where $U=\{s\notin W: f(s)>0\}$.

Let δ be an estimator of the form (1) where $r(\cdot)$ is nondecreasing and $0 \le r \le c(p-2)$. Then δ is a minimax estimator of θ under squred error loss.

Proof. Assume that r is differentiable.

(3)
$$\Delta_{\mathcal{S}}(\theta) = \mathbb{E}_{\theta} [|X - \theta|_{1}^{2} - |\delta(X) - \theta|_{1}^{2}]$$

$$=2\sum_{i=1}^{p} E_{\theta} \left[\frac{r(|X|_{3}^{2}) \ X_{i}(X_{i}^{-\theta}_{i})}{|X|_{3}^{2} \ a_{i}} \right] - E_{\theta} \left[\frac{r^{2} \ (|X|_{3}^{2})}{|X|_{3}^{2}} \right].$$

If $\varepsilon > 0$ then $\int_{\tau}^{\infty} f(v) dv < \infty$, hence if $|x - \theta|_2^2$ is a positive point of continuity of f,

$$\frac{\partial}{\partial x_i} (-1/2 \int_{|x-\theta|_2^2}^{\infty} f(v) dv) = f(|x-\theta|_2^2) (x_i - \theta_i)/a_i$$

An integration by parts gives

$${\bf (4)}\, E_{\theta} \bigg[\frac{X_{i} \, r(|X|_{3}^{2})}{|X|_{3}^{2}} \cdot \frac{(X_{i} \theta_{i})}{a_{i}} \, \bigg]$$

$$= \int \int \frac{r(|x|_3^2)}{|x|_3^2} \frac{2x_i^2}{|x|_3^4} \frac{r(|x|_3^2)}{|x|_3^4}$$

$$2x^2 r'(|x|_3^2)_3$$

$$+\frac{2x_1^2 r'(|x|_3^2)}{|x|_3^2 a_1^2} \bigg] (1/2 \int_{|x-\theta|_2^2}^{\infty} f(v) dv) dx.$$

Since r' ≥C by assumption

$$\Delta_{\delta}(\theta) \geqslant \int \frac{r(|x|_{3}^{2})}{|x|_{3}^{2}} \left[(p-2) \int_{|x-\theta|_{3}^{2}}^{\infty} f(v) dv - r(|x|_{3}^{2}) \right]$$

 $f(|\mathbf{x} \cdot \boldsymbol{\theta}|_2^2) d\mathbf{x}.$ Since $0 \le \gamma \le c$ (p-2),

$$[(p-2)\int_{|x-\theta|_2^2}^{\infty} f(v)dv - r(|x|_3^2)f(|x-\theta|_2^2)] \ge 0,$$

except on $\{x:|x|_3^2=0 \text{ or } |x-\theta|_2^2=0 \text{ or } |x-\theta|_2^2 \in W\}$ of measure 0.

Thus $\Delta_{\delta}(\theta) \ge 0$ and δ is minimax.

If r is not differentiable, the proof completes using Riemann integration, that the terms $r'(|x|_3^2)$ be placed by $dr_1(x_1)$.

For the general situation, let $X=(X_1, \ldots, X_n)^t$

be an observation from a p-dimensional normal population of the density of the form $f(x-\theta)^t 2^{-1}(x-\theta)$) with mean vector $\theta = (\theta_1, \dots, \theta_p)^t$ and known positive definite covariance matrix $\mathbf{1}$.

Then the loss is the quadratic loss $(\delta \cdot \theta)^t Q(\delta \cdot \theta)$ and Q is positive definite and $p \ge 3$.

In terms of the general problem, with arbitrary and Q, the estimator of (1) corresponds to

(5)
$$\delta(X) = (I_p - \frac{r(X^t x^{-1} Q^{-1} x^{-1} X) Q^{-1} x^{-1}}{X^t x^{-1} Q^{-1} x^{-1} X}) X,$$

where r is a measurable function from $R^1 \to R^1$ and I_p the p x p identity matrix. For simplicity let define $||x||^2 = x^{\frac{1}{2}} x^{-1} Q^{-1} x^{\frac{1}{2}} x$.

Theorem 3. The estimator δ given by (5) is minimax if

i) $0 \le r(\cdot) \le 2(p-2)$ and

ii) r(•) is nondecreasing.

Theorem 3 is a special case of theorem 2 in such of $c=\inf_{S} \left[\int_{S}^{\infty} f(v) dv/f(s) \right] = 2$. For the choice of r in (5), let α be the smallest characteristic root of the matrix $\mathfrak{P}Q$, and consider;

(6)
$$r_c(t) = \frac{t \int_0^{\alpha} \lambda^{(p/2-c+1)} \exp(-\lambda t/2) d\lambda}{\int_0^{\alpha} \lambda^{(p/2-c)} \exp(-\lambda t/2) d\lambda}, c < 1+p/2.$$

Then integration by parts gives

(7)
$$r_c(t)=(p-2c+2) - \frac{2\alpha^{(p/2-c+1)}\exp(-\alpha t/2)}{\int_0^{\alpha} \lambda^{(p/2-c)}\exp(-\lambda t/2)d\lambda}$$

When $Q=\Sigma^{-1}$ ($\alpha=1$), r_{C} gives rise to the admissible minimax estimator and the question of choosing c arises.

3. Admissiblity for minimaxity.

Note that in estimating a multivariate normal mean under a quadratic loss, any admissible estimator must be generalized Bayes.

Suppose that X has $N_p(\theta, \Sigma)$, Σ known and that it is desired to estimate θ under a quadratic loss. Then an estimator $\delta(X)$ is generalized Bayes (and hence potentially admissible) if and only if 1) The vector function $g(X)=\Sigma^{-1}\delta(X)$ is continuously differentiable, and the p x p matrix of first partial derivatives of g is symmetric;

2) exp (h(X)) is a Laplace transform (of some generalized prior), where h(X) is the real-valued function which has g(X) as a gradient. As a simple example, consider the estimator $\delta(X)=AX$, where A is a p x p matrix. Clearly $g(X)=\mathcal{D}^{-1}$ AX is continuously differentiable and its matrix of first partial derivatives is \mathcal{D}^{-1} A. Hence for above 1) to be satisfied, it must be true that A is of the form \mathcal{D} B, where B is a symmetric p x p matrix. For 2), h(X)

can be seen to be $h(X)=X^{t}BX/2$, and exp((h(X))

is a Laplace transform of a generalized prior if and only if B is positive definite.

Theorem 4. Assume that δ is given by (5), with $r=r_{0}$.

- a) If $3-p/2 \le c < 1+p/2$, then δ is minimax.
- b) If $3-p/2 \le c \le 2$, then δ is admissible.
- c) If $3-p/2 \le c \le 1$, then δ is proper Bayes.

Proof. a). To prove a), it is necessary to verify i) and ii) of theorem 3. From (6), $r_c(\cdot)>0$, since $c \ge 3-p/2$ and (7), $r_c(\cdot)<2(p-2)$.

Hence i) is satisfied. From (7) and the fact that $\exp((\alpha-\lambda)t/2)$ is nondecreasing in t for $0 \le \lambda \le \alpha$, it follows that $r_c(t)$ is nondecreasing in t. Thus ii) is satisfied.

b). To prove b) and c), δ must be shown to be a generalized Bayes estimator. Let simplify by considering only the case $Q = 1_p$ and $\Sigma = A$ where A is a p x p diagonal matrix with diagonal elements a > 0.

Since Q and 2 are positive definite, it can check always to be transformed into this diagonal case.

Note that $\|X\|^2 = \sum_{i=1}^{P} X_i^2 / a_i^2$ and $\alpha = \min(a_i)$ and let define $b_i(\lambda) = a_i(a_i - \lambda)/\lambda$ for notation. For c < 1 + k/2, the generalized prior density

(8)
$$g_c(\theta) = \int_0^\alpha \left[\prod_{i=1}^{\mathbf{p}} b_i(\lambda)^{-1/2} \right]$$

$$\exp(-1/2 \sum_{i=1}^{\mathbf{p}} \theta_i^2 / b_i(\lambda)) \lambda^{-c} d\lambda.$$

Since $b_i(\lambda)$ behaves like a_i^2/λ near $\lambda = 0$, $g_c(\cdot)$ is a bounded for the given c. Note also g_c has finite mass if c < 1.

The generalized Bayes of θ with respect to g_C is given componentwise by

(9)
$$\delta_{i}^{c}(X) = \frac{\int \theta_{i} \exp(-1/2 \sum_{i=1}^{P} (X_{i} - \theta_{i})^{2} / a_{i}) g_{c}(\theta) d\theta}{\int \exp(-1/2 \sum_{i=1}^{P} (X_{i} - \theta_{i})^{2} / a_{i}) g_{c}(\theta) d\theta}$$

Put the identities.

$$a_{j} + b_{j}(\lambda) = a_{j} + a_{j}(a_{j} - \lambda)/\lambda = a_{j}^{2}/\lambda$$

$$(1 + a_{j}b_{j}(\lambda)^{-1})^{-1} = 1 - \lambda/a_{j}, (b_{j}(\lambda) a_{j}^{-1} + 1)^{-\frac{1}{2}} = (\lambda/a_{j})^{\frac{1}{2}}$$

Integrating out over θ and using above identities, the numerator of (9) is

(10)

$$\int_{0}^{\alpha} (1-\lambda/a_{i}) X_{i} \exp(-\lambda \|X\|^{2}/2) \lambda^{(p/2-c)} \left[\prod_{j=1}^{P} a_{j}^{-1/2} \right] d\lambda$$

Simarly the denominator of (9) equals

(11)

$$\int_{0}^{\alpha} (1-\lambda/a_{i}) X_{i} \exp(-\lambda \|X\|^{2}/2) \lambda^{(P/2-c)} \left[\prod_{j=1}^{P} a_{j}^{\frac{1}{2}} \right] d\lambda$$

$$= \int_{0}^{\alpha} \exp(-\lambda \|X\|^{2}/2) \lambda^{(P/2-c)} \left[\prod_{j=1}^{P} a_{j}^{\frac{1}{2}} \right] d\lambda$$

Hence from (9)

(12)

$$\delta_{i}^{C}(X) = \frac{\int_{0}^{\alpha} (1-\lambda/a_{i})X_{i} \exp(-\lambda \|X\|^{2}/2)\lambda^{(P/2-c)} d\lambda}{\int_{0}^{\alpha} \exp(-\lambda \|X\|^{2}/2)\lambda^{(P/2-c)} d\lambda}$$
$$= \left[1-r_{c}(\|X\|^{2})/(a_{i}\|X\|^{2})\right]X_{i}.$$

Thus $\delta = \delta^{C}$ is the generalized Bayes estimator with respect to g_{C} and g_{C} has finite mass if c<1. Hence (c) of theorem 4 follows.

(c). The condition for determing whether or

not a generalized Bayes estimator is admissible are based on the behavior of $\delta(X)$ for large |X| or alternatively, on the behavior of the generalized prior for large $|\theta|$ and it was discovered in Brown, i.e.

Suppose that X has $N_p(\theta, I_p)$ and that it is desired to estimate θ under sum of squres error loss. Then a generalized Bayes estimator of the form $\delta(X) = (1-h(|X|))X$ is admissible if there exist $K_1 < \infty$ and $K_2 < \infty$ such that $|X|h(|X|) \le K_1$ for all X and

$$h(X) \ge -\frac{(2-p)}{|X|^2}$$
 for $|X| > K_2$.

Above fact, (11) and a change of variable give

(13)
$$\int_{\mathbb{R}^{P}} \left[\prod_{i=1}^{P} (2\pi a_{i})^{-1/2} \right] \exp(-1/2 \sum_{i=1}^{P} (X_{i} - \theta_{i})^{2} / a_{i})$$

$$g_{c}(\theta) d\theta$$

$$= (2\pi)^{-P/2} \left[\prod_{i=1}^{P} a_{i}^{-1} \right] \int_{0}^{\alpha} \exp(-\lambda \|X\|^{2} / 2) \lambda^{(P/2-c)} d\lambda$$

$$= (2\pi)^{-P/2} \left[\prod_{i=1}^{P} a_{i}^{-1} \right] \|X\|^{-(P-2c+2)} \int_{0}^{\alpha \|X\|^{2}} \exp(-\lambda / 2) \lambda^{(P/2-c)} d\lambda \leq K \|X\|^{(2c-P-2)}$$

where |X| denote the norm of X.

Then with the assumption that c<2, it follows b) of theorem 4.

Literatures Cited

- [1] Berger, J.O. 1976. Admissible minimax estimation of a multivariate normal mean with arbitrary quadratic loss.

 Ann. Statist, 4.223-226.
- [2] Berger, J.O. 1980. Statistical Decision Theory.
- [3] Bickel, P.S. and Doksum, K.A. 1977. Mathematical Statistics.
- [4] Efron, B. and Morris, C. 1976. Families of

- minimax estomators of the mean of a multivariate normal distirubtion. Ann. Statist 4, 11-21.
- [5] Giri, N.C. 1977. Multivariate Statistical Inference.
- [6] Johnson, R.A. and Wichern, D.W. 1982.
 Applied Multivariate Statistical Analysis.

國 文 抄 錄

多變量 正規分布의 平均의 Minimax 推定量에 關한 小考

本 論文에서는 多變量正規分布에서의 母集團의 平均 推定을 위한 Minimax의 條件과 그에 수반된 Admissible class에 관하여 정리 요약하였다.