A note on Minimax Estimators of the Mean
of a Multivariate Normal Distribution
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Summary

In this paper, we treat the condition of minimax estimators for the mean vector of p-variate normal
distribution and consider the class of admissible for arbitrary definite and covariance matrix.

1. Indtoruction.

Consider the problem of estimating the mean of
P »3 variate normal distribution. Stein has shown
that the best invariant estimator of p-dimensional
normal mean was inadmissible for p»3 and it
became admissible for p=2. In this paper, we treat
good classes of minimax estimators for location
vectors of certain symmetric densities and a class
of admissible minimax estimators for arbitrary
definite matrix Q and covariance matrix 3.

Let ai>0 (i=1,2, . ..., p) be known positive
If x=(x,, ...

constants, , xp)t is a p-dimensional

P
vector, tefine |x|? = 'El x; Il = Z
i= i=

2
X /ai, and
P 22
Ixt3 = £ Xi/3;
i=1

Let X+(X,,..., X )t be an observation from a
p-dimensional density of the form f(|x-8|3), here

69, ,...,06 ) is an unknown location vector.
Assume the loss incurred in estimating 8 by § is
{8012

For a measurable estimator §(X)=(5,(X), . . .,
5 (X))}, define the risk function R(5, 6)=
Eg|8(X)41}, where Eg is the expectation under 6.
Then the best invariant estimator of 8 is §,(X)=X
and it is known that §, is a minimax estimator
under squred error loss, Furthermore, §, has
constant risk, An estimator § is minimax if A8(9)=

R(64,0)—R(S, 0)20.
2. A class of minimax estimators,

Let consider the estimators are given compo-

nentwise by
(1) 8 X=(1-X3)/ X3 a)X;

and density of the form with respect to Lebesque
measure



) ruxaaz)-s (2myP/% "(p % explIx 912/

(20%)) dF (g), where F is a cdf on (0, «).

A density f(Ix-8(3) is of the form

(2) if and only if f is completely monotonic in

(0, =),
Proof.

Theorem 1,

Define t=1/(20%), s=|x9]3, and G(t)=

t
-§ o«29P'? 4r(1/2v)™). Then G is positive
[1]

L]
and nondecreasing t and f(s)=S et dG(1) is the
(4]

form of Laplace transforms if and only if it is
completely monotone.

Theorem 2. Let f([x-8]3) be a density and X an
observation frcm p-dimensional density of form
(2), where p=>3. Assume Eo|X[? and E,|X|7?
If f satisfies

i) The set points W in (0) at which f(e) is
discontinuous haz° Lebesque measure zero,

§ foav
if) c=inf, seU  1(s)

are finite.

>0, where U={s4W: f(s)>0).

Let & be an estimator of the form (1) where () is
nondecreasing and 0<r<c(p-2). Then & is a mini-
max estimator of @ under squred error loss,

Proof. Assume that r is differentiable,

() B50»=EglIXB1} -16X)912 )

P or(XB)x. (x4, (X3
=2i§150[(l 13) 1( A 1)]—E[ { |3)].

X3 a X3

&0
If e>0 thenj; f(v)dv<eo, hence if |x8)2 is a
positive point of continuity of f,

9 ®0
—(~1
axi( ’zs.xo
An integration by parts gives
X; MIXI3) (X6)
4 LS
( 0[ 2 ]
Xi3 a

, fV)dv) = f(1x9 |§)(xi0 i)/ai.

Hixl) 242 w(ixf})

4 2
22
I3 ;

v X3 Ix

2x2 r'(Ix|3

)
] (1/2 j f(v)dv)dx.

ki 2
Since ' 2C by assumption

(|xf3)
850> f — [(p 2) I

f(v)dv-r(lxlg)

f(lxﬂli)]dx.
Since 0<y<cc (p-2),
5
(p-2f  fwdvrx)E((x813)] >0,
ix9?
except on { x:[x|3=0 or [x8[3=0 or [x-§|2eW} of mea-
sure 0.
Thus Ag(8) >0 and § is minimax.
If 1 is not differentiable, the proof completes using
Riemann integration, that the terms r'(|x|2) be
placed by dri(xi).
For the general situation, let X=(X, , . . . , Xp)t

be an observation from a p-dimensional normal
population of the density of the form
fx-0)'2" (x-8)) with mean vector 6=0,,...8 )t
and known positive definite covariance matrix I)
Then the loss is the quadratic loss (8-8) Q(58)
and Q is positive definite and p=>3.
In terms of the general problem, with arbitrary
X and Q, the estimator of (1) corresponds to

t*-: Q t-l X) Q! :-l
x'$1QrEx
where r is a measurable function from R!—» R!
and 1

p

let define [Ixl*=x'$ Q' $°%.
Theorem 3. The estimator § given by (5) is mini-
max if

(% 6()()=(Ip -

the p x p identity matrix. For simplicity
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i) O<r(+)<2(p-2) and
ii} 1(+) is nondecreasing.
Theorem 3 ‘is a special case of theorem 2 in such of

OO
c=inf8[j f(v)dv/f(s)]=2. For the choice of r in
(5), let ?1 be the smallest characteristic root of the

matrix $Q, and consider;

o AP/2-C+1) oy b (CAy2)dN
(6 r(n=20

5: AP/2€) oy b (CAy2)dA

Then integration by parts gives

, e<1+p/2.

2a(p/2-c+]) exp (—at/2)
f‘: )\(p/2-c) exp (=At/2)d\

(N 1 )=(p-2c+2) -

When Q=X (a=1), . gives rise to the admissible
minimax estimator and the question of choosing

C arises.
3. Admissiblity for minimaxity.

Note that in estimating a multivariate normal
mean under a quadratic loss, any admissible estima-
tor must be generalized Bayes.

Suppose that X has Np(ﬂ, ), T known and
that it is desired to estimate § under a quadratic
loss. Then an estimator 8(X) is generalized Bayes
(and hence potentially admissible} if and only if

1) The vector function g(X)=3"' §(X) is continuou-
sly differentiable, and the p x p matrix of first
partial derivatives of g is symmetric;

2)exp (h(X)) is a Laplace transform (of some
generalized prior), where h(X) is the real-valued
function which has g(X) as a gradient. As a simple
example, consider the estimator 6(X)=AX, where A
is a p x p matrix. Clearly g(X)=%™ AX is contin-
uously differentiable and its matrix of first partial
derivatives is ' A. Hence for above 1)to be satis-
fied, it must be true that A is of the form ¥B,
where B is a symmetric p x p matrix. For 2), h(X)

can be seen to be h(X)=XtBX/2, and exp({(h(X))

is a Laplace transform of a generalized prior if and
only if B is positive definite.

Theorem 4. Assume that § is given by ($),
with =T

a) If 3-p/2<c<1+p/2, then & is minimax.

b) If 3-p/2<c<2, then § is admissible,

¢) 1f 3-p/2<c<], then § is proper Bayes,

Proof, a). To prove a), it is necessary to verify i)
and ii) of theorem 3. From (6), rc(-)>0, since
c¢23-p/2 and (7), rc(-) <2(p-2).

Hence i) is satified. From (7) and the fact that
exp ((a-A)t/2) is nondecreasing in t for 0<A<a,
it follows that rc(t) is nondecreasing in t. Thus ii)

is satisfied.
b). To prove b) and c), § must be shown to be a

Let simplify by
and X = A where
A is a p x p diagonal matrix witﬂ diagonal elements
ai>0.

Since Q and X are positive definite, it can check

generalized Bayes estimator.

considering only the case Q =1

always to be transformed into this diagonal case.
P2

Note that IXI? = .EIXi/ail and a = min(a,) and
i=

let define bi(k) = ai(ai-k)/k for notation.
For ¢<1+k/2, the generalized prior density

P ,
® g0 =" ljrlbi(M'/‘l
o 1=
P
exp(-1/2 2 83 /b0 ) XA,
1=

Since bi()\) behaves like a'; /A nearA =0, gc(°)
is a bounded for the given c. Note also g, has
finite mass if c<1.

The generalized Bayes of 8 with respect to g

is given componentwise by

P
f Biexp(—l/Z i‘:;] (Xi-Oi)2 /ai) gc(())dﬁ

(9) 85X = >
S exp(-112 2z (X,8)% /2 g.(6)d0

Put the identities.
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4 = ¥ 1

= = g?
% + bj(k) =a + aj(aj-k)/)\ 9 A
-1 \=1_ -1 -4 = %
(l+ajbj(>\) = l-klaj,(bj(k)aj +1) —O\/aj)
Integrating out over § and using above identities,

the numerator of (9) is
(10)

P
Id (l-}\/ﬂl)xi exp(_}\|x|2/2))\(9/2c) [_n_] aj-%] a
0 =

Simarly the denominator of (9) equals
(11)
a P, P Y2
§ (1-NapX; exp(- IXI? )2\ P2 (T, &™1d
° J

P
= S" exp(-MX12/2) AP29) | T a]t"“l d\
] ]2

Hence from (9)
(12)
! a (1-MapX; exp(-NX P /2272 a)

85(X) = .
I exp(-MXE 2)A P9 gy

= [1-rc(lxll’)/(ailxl’)]xi.

Thus §=§° is the generalized Bayes estimator
with respect to g, and g has finite mass if ¢<I.
Hence (c) of theorem 4 follows.

(c). The condition for determing whether or

not a generalized Bayes estimator is admissible
are based on the behavior of §(X) for large IX| or
alternatively, on the behavior of the generalized
prior for large 18| and it was discovered in Brown,
ie.

Suppose that X has Np(0, lp) and that it is
desired to estimate & under sum of squres error
loss. Then a generalized Bayes estimator of the
form 8§(X) = (1-h(I X1))X is admissible if there exist
K, <= and K,;<e such that IXIh(IXI)<K, for all
X and

h(X) = - for IXI>K, .

(2-p)
X2

Above fact, (11) and a change of variable give
(13) f (1 (2nay) Pxon
fRP ;r:l ma, e)(p(-l/Zi;:l(Xi P13
g (6)do
LT A, 2 P
=(2m) [‘_‘r‘] a; ]SCXP(-)\“Xl J2NPR<I
= o

—m®2 (5 X I"‘"‘"
i=1 1 °

exp(-A/2QANP2€) gy < K IX|2eP2)

where 1X| denote the norm of X.
Then with the assumption that c<2, it follows
b) of theorem 4,
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