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Hierarchical Optimal Control of Large-Scale Systems
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Abstract

A hierarchical technique, which is based on the interaction prediction principle, is described
in a unified manner for the optimal control of large-scale systems with/without time-delays
to apply niver pollution control. The optimal servomechanism problem is transformed to the
regulator problem by introducing a predetermined nominal input into the performance index
and the optimal solution to the transformed problem is obtained in a hierarchical manner.
Especially in the case of no-delay model, the feedback gain matrix and the compensation
vector which are optimal for any initial conditions can be obtained to construct closed-loop
control. Compuer simulations for the river pollution models are provided to demonstrate the
validity of the proposed algorithm.
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I . Introduction

For nearly two decades, there has been
considerable interest in the development of
hierarchical control of large-scale complex

1-5)

systems The advent of parallel
processing technology and emphasis on
fault-tolerant system design are additional
factors motivating such development.
Basically, the hierarchical control technique
is composed of decomposition and
coordination processes. In decomposition
process the large-scale problem is divided
into a number of smaller subproblems
which can be solved independently each
other at a lower level On a upper level
the coordination variables are updated
successively to force the lower level solutions
to be the optimal solution of the overall
problem. Therefore, through multilevel
methodologies, a large-scale control system’s
complexity can be relaxed by solving
decomposed subproblems which are of
smaller dimensions.

Although various hierarchical multilevel
control techniques for the large-scale
systems have been reported in the
literature®”, the contral obtained by these
methods is open-loop in nature so that it is
necessary to recalculate it every time an
unknown disturbance changes the initial
state of the system. To get around the
computational difficulties which are
associated with computational time and
storage space, Singh et al** have proposed
a promising hierarchical algarithm by using

interaction prediction method.  This
algorithm is found to be superior to other
multilevel methods for a certain class of
optimization problems. On the upper-level, it
has more rapid convergence rate and fewer
operations than other coordination rules
such as linear search algorithm”. But it
also has a disadvantage that dimension of
the given system has to be increased for
the optimal control of time-delay systems.

In this paper, we describe an efficient
hierarchical optimal control method for
large-scale systems with/without time-delays
in states and mnputs to apply niver pollution
control. The optimal servomechanism
problem is transformed to the regulator
problem with constant input by introducing
a predetermined nominal input into the
performance index and the optimal solution
to the transformed problem is obtained in a
hierarchical manner. The steady-state error
which is defined as the difference between
the target state and actual state in steady-
state is derived analytically. In no-delay
case, the feedback gain matrix and the
oompensation vector which are optimal for
all the initial conditions are calculated so
that eventual on-line computation is
minimal,

The rest is organized as follows. In
section 2, the optimal control problem of
large-scale systems is formulated and a
hierarchical optimization technique is
described in section 3. Section 4 provides
steady-state considerations in steady-state

error and closed-loop control.  Simulation
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results for the river pollution model are
provided in section 5 and the conclusion is
described in the final section.

I. Problem Formulation

Consider the following lnear quadratic(LQ)
tracking problem of large-scale system with
time—delays in states and inputs:

8, LA
Kh+D) = B Axk-D+ F B k=D + c (1)
=9 =0
- Y
I= 3 E00-x 15+ 1uB-u"1}} (2)
with initial conditions
B = 4,08, —8,<ks0 (3a)
wWk) = @0k, —8.5k0 (3b)

where AK/=012"0x)ER™ is a system
matrix, B//=01,2"0u)ER™ is an input
matrix, cER™ is a constant input vector, &
is a maximum time-delay in states, &u is a
maximum time-delay in control inputs, Q€
R™ is a state weighting matrix, RER™ is
an input weighting matnx, xX€éR™ is a
constant desired or target value of state
vector and WwER™ is a predetermined
nominal control input, which will be
discussed in section 4. It is assumed that
Q and R are positive semi-definite and
positive definite block diagonal matrix,
respectively. Here, the optimal control
problem is to find a control law which
causes the state vector of the system (1) to
follow a desred value that minimizes the
performance index (2).

Define a new state and contral vector as
follows:

2lk) =x(k)}x’ (4a)

k) =ulk}uw (4b)
Then we can obtain the following transformed
regulator problem from the above optimal
servomechanism problem.

0. s,
2(k+1) = gﬂAzz(k—l) + EaB'v(k_D + (5)

k-1
=0

J= LS 01y + 1umry (6)

with initial conditions
2B = LB -2, —6,<k<0 (8a)
B = s(B—u". ~6,<k0 (8b)

The centralized optimal control is
prohibitive to the above large-scale systern
due to computational difficulties which are
associated with computational time and
storage space. To get around the
computational difficulties, we develope a
hierarchical optimal control technique based

on interaction prediction method.

[[. Hierarchical Optimization

Let’s decompose the above centralized
optimal regulator problem into a number of
smaller subproblems to obtain the optimal
salution in a hierarchical manner. The i-th
subproblem is expressed as:

z{k+1) = ALl + Bivdk) + & + h(k) (9)

RB = m$1-0>[ ,}::'aL,,z,u—o + ;::',ou,,u,u—o](m)

- 1%
L= g Zl1a0 e + 1ub %) (11
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with initial conditions

(12a)

2{B) = b (B—xf, —6,5ksD
vi®) = ¢, (B —u]. —8,<k0

(12b)

where hi(k)ER™ consists of interaction

inputs which come in from the other
subsystems and time-delayed states of the
i-th subsystem, La€ R™ is a coupling
matrix of states, MyER™ is a coupling
matrix of control inputs and N is the
number of the interconnected subsystems
which comprise the overall system.

Now, we use the interaction prediction
method which is attractive due to simple
upper-level algorithm and fast convergence
rate, Basically, the interaction prediction
method is composed of two levels. The
optimal solutions of decomposed subproblems
are obtained at lower-level and the
coordination vector is updated at upper-level
to force the independent lower-level
solutions to be the optimal solution of the
overall system. Firstly, consider the lower-
level problem to find the optimal solutions
for the decomposed subproblems. The
Hamiltonian function for the i-th subsystem

can be written as:

H = {1201 % + 1oBl%) + r/(BhB

N 4, o, 7
o B AR DL 2B+ F et DM AR
+ gl (k+1D{A, 248 + B, v + ¢ + h(R)
(13)

where n(k)ER™™ and q(k)ER™™ are
Lagrange multiplier and ocostate vector of i-
th subsystem, respectively. From (13) the
necessary conditions for optimality are
obtained as[11]:

2{k+]) = A,z(D+B,vi{k)+I+hi{k) (14)
240) = ¢,(0)—x (15)

_ _ N [ A r (16)
el = —R'l Blotk+D)= 2 5 Mur{k+D]
D=0, (k2k) (17)

N 9,
k) = Qzll+Alatk+D— 5 S Lir{k+D (18)

alk) = 0

(19)
Next, consider the upper-level coordination
rule in order to force the lower-level
solutions to be the optimal solution of the
overall system. For this purpose, the
additively separable Lagrangian function can
be written as:
L = )i] :201[ Lam i + Lo m%) + 2l os,w

A 8, [
- 5 y,’u)[zL,l,z,(k—o + ¥My, u.<k—/)}
Gz di=0) =10 =0

+ @l (k+ DA, 2(B + B, vi®) + & + (k) —2,(k+D}]
(20)

A necessary condition for the overall
optimum is given as[11]:

ol _ ol _
i —Oad ey =0 (21)

Then the coordination rule at the upper-
level from iteration L to L+1 is obtained by

[ (B - ~gqlk+1) .
h,(k) N 8. _ . _
‘ (,x..zn;l=m{ l=nL"’ 2{k=D) + Z‘DM"' vik 1)}

(22)
Now, a step-by-step computational

procedure to obtain optimal control law is
summarized as follows,

step 1: At the upper-level, set L=1
and predict initial values for 7(k) and h(k)
(i=12.N, k=01, k1),

down to the lower-level,

Then pass them

step 2: At the lower-level, solve the
independent necessary conditions for
optimality (14)-(19) by using 7(k) and
h(k) passed from upper-level. Then send
Z(k), vi(k) and q(k)(i=12_.N, k=01, k-
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1) to the upper-level,

step 3: At the upper-level, check the
convergence of (22). ie, whether their
errors are within the predetermined error
bounds, € If not, update 7(k) and hy(k)
from (22) by using Zi(k), vi(k) and g(k)
passed from the lower-level. Then set
L=L+1 and go to step 2.

step 4° If step 3 is converged, calculate
the optimal control law and state trajectory

from (4a) and (4b), respectively.

IV. Steady-State Considerations

If the final time k; is large enough for
the system to reach a steady-state, we can
derive the steady-state error analytically and
obtain closed-loop control law. Firstly,
oconsider the steady-state error.

Theorem 1. I the proposed hierarchical
algonithm in section 3 for the optimal control
of large-scale system (1) through (3)
converges, the steady-state error is given
as.

e = n-Fa+ EprE s -Fanig
(23)

Proof of Theorem 1

If the algornthm is converged, the left-
hand side of (22) is equal to the right-hand
side. Hence we obtain the following

integrated expressions:

[A 8. 7
Ak+D) = ZAzk-D+ ZBKk=D+c (24)

k) = —-R”' gnB,rq(k+l+l) (25)

a,
k) = QZ(k)+Z_:0A,Ta(k+1+I) (26)

Since z(k), v(k) and q(k) are constant
vectors at steady-state, we have

b= BAnt BBt 27)
b= R Epla, (28)
q, = Qz, 4+ Z:OAITUI, (29)

where the subscript s denotes steady-

state, Combining (27), (28) and (29), we
obtain

[ L-3Alz= —( 581 R 5B

[ .- ')::'OA,’] Qe+

Define the steady-state error as the

(30)

difference between the target state and
actual state in steady state:

e = x"—x, (31)

Taking into account (4a) and (31), we
obtain (23) from (30). This completes the
proof,

Remark 1:
(a) The quantity inside the braces on

the right-hand side of (23) is nonsingular if
the inverse of [ .- IéA,] exists,

(b) The necessary and sufficient
condition for zero steady-state error is that
a vector [ 1.—2}0/1,] »—¢ belongs to the col-
u mn space of a matrix ﬁDB,.

(c) The steady-state error can be
obtained from the given state equation and

performance index without solving the
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optimal control algorithm.

Remark 2:

(a) If the necessary and sufficient
condition for zero steady-state error is
satisfied, the nominal control input U is
obtained by
w =0 ijna,’] ( é}oBll ]71[ ,2:30371 (02~ fiA,] -4

(32)

(b) If the condition is not satisfied, the
nominal control input obtained from (32) is
a approximate least-square solution for C'=0
In this case the steady-state error is given
as
e = L (BAr+(EBIRE B, - £anq .

~(E BN BT S B ;iios,’)][u. - S ant-a H(33)

Next, consider the closed-loop control law
which can be obtained as follows for the
no-delay model(/=0)",

W) = Gx(k) +d (34)

where G and d are the constant
feedback gain matrix and the compensation
vector, respectively. The procedure to
obtain G and d from the hierarchical
algorithm can be summarized as follows.

In case of =0 the feedback gain matrix
is obtained by

c=vz' (35)

where V:* and Z:* are the optimal
solutions obtained from the hierarchical

algorithm, which are defined by

Vim [ o) L1 on=D)] (36a)

Zom [ «0) ) 2n—1)) (36b)

Then, from(4a) and (4b) we can obtain
the compensation vector as:

(37

d= —-Gx* + u"

In case >0 we can obtain the feedback
gain matnx as:

G=vig" (38)
where

V; = [ ®0)=okm) i) —okm) — n—D—oim] (392)

Z= [ 20 —z(m) «D—2(n) ~ 2ln-D—zm] (39b)

Also, from(4a) and (4b), the compensation
vector is given by

d= -G + v + 4 (40)
where 4 is defined as:
d, = o) — G2(D) (41)

V. Numerical Examples

To ilustrate the proposed algorithm, we
consider the following two examples.

Ex. 1: River pollution model with no time-

delay™
The numerical values for the model are
N=2 ni=2 m=1(i=1, 2), =0, &.=0,

- 0.18 0.0
A [ - 0.2 0.27

S IREE

6
o= 55 88) - L.

= [ —20 i=
. B, [ o] - G=r»

Mx = Myo- 0 Qi=0,, R=100, e=10"° and k, = 2
which is large enough for the system to
reach a steady-state.

Simulations are carried out for the



following two cases:

Case 1: The necessary and sufficient
condition for zero steady-state error is
satisfied .

x=[141670] Tand x§ = [ 5.5%7.0]1 .

Case 2: The necessary and sufficient
condition for zero steady-state is not
satisfied

! = (5070 Tad xf =[507.00 ".

The proposed hierarchical algorithm was
converged after 10 iterations and the
feedback gain matrix for two cases is
obtained as follows:

.0074610 —.0011551 .0005578 —.0001175

¢= [ .0120503 —.0017040 0041831 —.0003941

And the compensation vector is given as

d = [ 05192195 —0.1980404] 7 : Case 1

d = [ 0.1709%16 —0.2537002) 7 : Case 2

The square root steady-state error for
Case 1 is always zero irrespective of
weighting matrices. And the steady-state
error for Case 2 is 0.0812 (R=50L,),
00821(R=100L,) and 00831(R=500L). In
general, it is noted that an increase in R
reduces the steady-state error.

In addition, the optimal trajectories of
state variables for the Case 1 are shown in
Fig.l. The results obtained from the
hierarchical algorithm are nearly identical to
those of the centralized optimal control
which is omitted here,

follows:
8 T T T L] T ﬁ T T
w 6 - -
a
2
E 4 L T T i . o o o e —
(&}
< .
=2t : Lo
o ) ; : ; : H ; ; ;
0 2 4 6 8 10 12 14 16 18 20
TIME STEPS
8 T T T T l 1 T T r
_ : x4 :
i BF B )0 ....................................... J
[a] R
= :
E 4 ..................... =
o .
< :
z 2 ....... . ................................................................................ .-
0 | 1 1 ' 1 3 1 a1 1 3
0 2 4 6 8 10 12 14 16 18 20
TIME STEPS

Fig. 1. Optimal trajectories of state variables
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systems with/without time-delays to apply

river pollution control.

Ex. 2° River pollution model with
distributed time-delay'”

The numerical values for the model are
N=3 n=2 m=1(i=123), 8x=2, @u=0,

The optimal
servomechanism problem is transformed to
the regulator problem by introducing a

- 0.18 0.0 _ [ -20 _ predetermined nominal input into the
A= _imon] Bu= [ S0 v=r123
[ .5 [ 2.0 [ 2.0 performance index and the optimal solution
o = ¥ . G = y . 0= y
6.15 2.8 265 to the transformed problem is obtained in a
L= Lyn= Lop= Lyp= 0.0825 0.0 ] . LG=L:m=[ 0.385 0‘0] . .
0.0 0.082 0.0 0.3 hierarchical manner. The steady-state error
=5, R=100, e=10"5 &k, = d th . .
=k €107k = 30 and the other values of 4o for the proposed method is derived
L and M.. are 0.

Simulations are also carried out for the
following two cases,
Case ' x{ = [ 4.16 7.0] "and x5 = x§= [ 5.5 7.0] ".
Case? x{ = [ 5.07.0] "and x§ = 2§ ={ 5.07.0] .

The proposed hierarchical algorithm was
converged after 15 iterations and the square
root value of steady-state error for case 1 is
zero as expected and for case 2 is 01123,

The simulation results for two examples
show that the proposed algorithm has
comparatively fast convergence rate and the
steady-state error is exactly consistent with
Theorem 1. Therefore, we can obtain the
steady-state error from the given state
equation and performance index without
solving the hierarchical optimal control
algorithm,

VI. Conclusion

A two-level hierarchical technique, which
1s based on the interaction prediction
principle, is described in a unified manner
for the optimal control of large-scale

analytically. In addition, the feedback gain
matrix and the compensation vector which
are optimal for any initial conditions can be
obtained for no-delay model. Computer
simulation results for river pollution models
show that the proposed hierarchical
fast
convergence rate and that the steady-state

algorithm has comparatively
error can be calculated from the state
equation and performance index,

Further work is currently being camied
out to utilize these hierarchical algorthm in
a real field, such as road traffic control and

communication routing control.
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