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Summary

Some recent results for the design of 2- D wave digital filters with circular symmetry by making
use of a reduced McClellan transformation are introduced. The rsulting filters have a very good circularly

symmetric characteristic. The performances of filters with moderate degree can satisfy a certain prac-

tical requirements. The realization of the filter is also discussed.

INTRODUCTION

Two-dimensional ( 2- D) digital filter with
circularly symmetric magnitude response are
frequently needed for 2- D digital signal proc-
essing such as image processing ( Huang, 1975) .
Hence the design of filters of this kind has been
drawing the interest of many researchers.
Various design approaches have appeared in the
literature (Costa and Venetssanolos, 1974.)
Filters designed by using the rotation and the
spectral transformation require recursion of data

in different direction and so they are not
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appropriate to the real time application ( Huang,
1975) . Various computer aided optimization
approaches can produce transfer functions
having nearly circularly symmetric property,
however, involve difficulty to ensure the
stability. Besides, the obtained transfer
functions need not to have a passive network
counterpart which is desirable from various
consideration ( Fettweis, 1972).

In (Rajan and Swamy, 1978). Rajan and
Swamy proposed a straight forward method to
design circularly symmetric low pass digital
filters of arbitrary order. The resulting filter

possesses good circular symmetry in the
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neighbourhood of the origin and controllable
selectivity. Especially, the filter is guaranteed
to be stable and causal, having rational transfer
function with product separable denominator.
However, the results of the method seem not so
satisfactory in a few aspects. First, for the case
of equiripple error approximation, the
circularness in the transient band is not good.
This is inevitable for the method, because
equiripple approximation will disturb
coefficients of the numerator of transfer func-
tion as to deflect the numerator from
exponential approximation, which is required for
circular symmetry. Second, the response in the
stop band is monotonic { has no zeros).
Consequently, it is difficult to produce a more
sharp cut off characteristic. Third, once the
denominator of the transfer function has been

fixed by the exponential approximation, the

characteristic will depend on the numerator.
The method shows the best result can be
obtained when the numerator degree is nearly
half of the denominator degree. This implies a
certain potential has not be utilized.

This paper propose an alternative method by
making use of the McClellan transformation
reduced by A. Fetweis for updating the design
of numerator of transfer function. As a result,
the obtained filters have all good features as
ones in ( Rajan and Swamy, 1978) . Furthermore,
very good circular symmetry in the transient
band and more sharp cut off characteristic can
be obtained. Equiripple can be achieved in pass
band as well as in stop band, if required. The
performances of filters with moderate degree
can satisfy a certain practical requirement.

Transfer function obtained in the presented
paper has a passive network counterpart and can
be realized by wave digital filter ( WDF)
( Fettweis, 1971). This is practically very im-

portant for 2— D recursive filters. The resulting
filter is then not only automatically stable
under linear condition, but all small and large
scale parasitic oscillations can be fully
suppressed. Forced-response stability can be
guaranteed, shorter coefficient wordlength can
be adopted for a suitable dynamic range. All the
situations are the same as in 1-D case
( Fettweis, 1986) .

As a contrast, in ( Rajan and Swamy, 1978)
the authers provide a transfer function in
z-variable form as a final result, which will
correspond to a conventional 2— D digital filter
and, in view of the resulting performance, be
usually less attractive.

Linear phase is shown to be very important in
2—- Dfiltering applications ( Huang, Burnett and
Deczky, 1975). Recursive filters, however,
usually have nonlinear phase characteristic.
The correction is therefore required in usual
case. For the filters obtained in this paper the

phase correction is relatively easy.

THE DESIGN APPROACH

In order to produce a transfer function that is
suitable to be realized by a 2— D WDF, we will
adopt the equivalent complex Frequency ¢
defined by

2z

¢ = tanh(pT,/2) )

z +
:=ePT | F=1/T (2a,b)

where z is the usual z-variable and ¥ the
sampling rate, p the usual complex Frequency.

Let ¢ = j¢ abd p=j&, we have
¢ = tan(w/2) @3)

whel;e w=T, the normalized real frequency.
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In (Rajan and Swamy, 1978) it has been
shown by Rajan and Swamy that a two variable
rational function poésessing quadrantal sym-
metry is causal and stable if and only if its
denominator is expressible as a product of two
one-variable Hurwitz polynomials. Thus, the
desired magnitude squared function of the
analog transfer function should have the form

as

F2(PY . 92)

2
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where G( ¥?) can be chosen in the same way as
in ( Rajan and Swamy, 1978) . That is, we should

have

G ) =C(w?) ~e @of _ o a’(2arcrarp)?
[}
In the range | ¢ |{}( w<{x/2),arctan w= ¢ Let
G(p2)~ ™% we have
0 (a@p?)i

G(py =5 (5)
10 it

where n and a can be determined in an
appropriate way. Consquently. the contribution
of the denominator in eq. (4) to the magnitude
response is circularly symmetric in the
neighbourhood of the origin.

Since the denominator is almost fixed, the
choice of the numerator will be the key for
obtaining a desired characteristic. QOur pro-
cedure consists of two steps. First step, we
search for a one-variable function F(¢? ) so that
F2(p2),/G (9%) possesses a desired 1- D mag-
nitude squared response ( MSR). This can be
done by first determining a approximate guess
for F*( ¥2) using the simple interpolation and
then by optimization using Remez exchange
algorithm ( Blum, 1972). In this case, 1/G( ¥?)
can be regarded as a weight. Once F*( ¢2) /G(¢9

has been determined, the second step is Mc-

Clellan transformation for only the numerator.
In (Fetweis, 1977), A. Fettweis proposed a
reduced form as follows ( for 2- D case)
P2 =92 4 903_ +kpZ . @2 )
When k= 1~2 ( typically, k= 1.33), the contour
diagrams of eq. (6) in w-plane exhibit very
good circular symmetry even in some distance
from the origin. Additionally, for different
distance of transient band from the origin, k can
be chosen so that the best circular symmetry can
be achieved. Thus, the obtained 2~ D MSR has
the form

F2(PE+9% +kPF - 92 )

IHCi®y, 19y 12 = <P
GG (el

It should be mentioned that the results in (8)
can be viewed of a special case of eq. (7) when
k=0.

As it can be illustrated that the 2— D MSR in
(7) will lead a realizable 2— D transfer function
by using WDF.

AN ILLUSTRATED EXAMPLE

Given the specifications of a 2- D low-pass

digital filter as follows: Ripple in pass band

0 -;,/w,zﬂu%go.s) :> .1 dB,
(Vol+ wl)1.%):>40 b

Attenuation in stop band (vm)l.%):mds_
In order to produce a suitab;e Fg( ¥?), the
following observation would be beneficial.
Under the McClellan transformation, a real zero
of F( ¥?) will form a zero circle of MSR. A
imaginary zero of F(¢?) will contribute a
concave top to MSR. A comolex zero of F( ¢2),
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if the location is suitable, may introduce a con-
cave ripple to MSR. For the given specifications,
it is successful to choose the degree of F( ¢?)
to be 6. Thus, let

FP2)=14a,P2+a,P% + a,p° (8)

The degree of G(¥?) should be higher than 2x6,

we use degree of G{ ¥?) 2x8. By carrying out

the procedure inmtroduced previously, a 2-D

MSR can be found in the form of eq. (7) with
8 (agy?)i

G(PE)=Y ——— &)
i= if

FP?) =A(P2—a, )(Pl—a, 3 (PP—ay)  (10)

where a,= 13.635, a,= 0.6601, a,= -0.0993, a,=1.
419, A = 10.68943

Consider the McClellan transformation of a
factor F,(¢?) =¢?—a; . Thus

3

Fi(9}, P3)=xp} - 92+ 9% +93—a;
=(B;PE+T) (PE+o,)+

(B;93+7) (P2 +a;) A

where

f,=k/2 (12a)
T, =t/ T+a;k)/12 (12b)
g, =—a; /4, (12¢)

As it can be seen that the expression of (11)
is favorable for realization by WDF. And, this
is feasible only when 1+ a; k=0. In usual case,
this conditon is no problem. Since G{ ¥?) is a
even function in ¢, G(-¢?) can be factorized
in the form G(-¢¢)=g(¥) -g(-¢), where
g(¢) is a durwitz polynomial. After
factorization of G( ¥*), the following transfer
function can be formed

21 (PE—71i0(Pi—a, )+ (PE—TW@WI—0a; )

H((l’], (/)2): izl

13)

g(¢’1)8 (4)2)

where 7y} =7/ B, and

4 4
E(Sl’)"—.[ll g, (=11 ($2+a;¢+b,) QB
i= i=1

It is convenient for realization to give the
freedom of choice. The transfer function (13)
has a realization as shown in Figure 1. Note that
every block of the filter corresponds to a passive
network: if the numerator is quadratic, then the
block corresponds to a Brune or typ— C section,
dependil.lg on the sign of the constant term; if
the numerator is a constant, then the block
correponds to a ladder network. In any case, a

realization by WDF is always possible

( Fettweis, 1986). Thus, the filter can be
implemented by using 14 2- order 1- D WDF's,

In Figure 2, a perspective view of |H( jw ., jw )
in eq. (13) is given, where

ACiw;, jw,)=HCie,, iPl9;

=tan(w;/2), i =1, 2 as)

Pas
The contour plots of [H( jw,, jw,) | is shown in
Figure 3. As it can be seen that very good cir-
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Under the McClellan transformation,
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In this case F( $?) can not be put into the form

cular symmetry has been achieved. The obtained

of eq. (10). However, at any rate, F( ¢?) can

0.3is0.05 dB

=

V! to?

<

ripple in the range

2+w2

be designed to be a product of 4-order poly-

>1.3

wy

¥

and the attenuation in stop band

5 is 39.65 dB.

nomial.

the resulting transfer function is zlso realizable

If a steeper transient band is requested, we

by combination of Darlinton typ- D sections.

should introduced some complex zeros in F( ¢2).

(a) Structure of the filter
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(b) Building blocks of the filter
A realization of the transfer function

1.

Fig.

Fig. 2. The perspective view of magnitude response in {13)
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Fig. 3. The contour plot of magnitude response in (13)

CONCLUSIONS

This paper has introduced results for the
design of 2— D WDF with circular symmetry by
making use of a reduced McClellan

"transformation. The obtained filters have a very

good circularly symmetric characteristic. The

realization of the filters is also discussed.
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