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I. Introduction

In classical theory. forces need to be known
only on the of the particles. therefore. classical
theory is the local theory. These forces are
expressed in terms of electromagnetic field only
in electromagnetism (i.e. Lorentz force
q [ E +%§/' X g:])

Thus, in all regions where field strengths are
inaccessible, the motion of the particles is not
affected by this Lorentz force. even though
potentials exist which are considered as' mathe-
matical auxiliary quantities.

But in quantum theory. the situation is diffe-
rent from the above. Also. in quantum theory the
physical quantities are all guage invariant. It

may seem that potentials are not considered as
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basic quantities because they depend on a
guage. But if potentials are expressed in a guage
invariant form (ie. f;-d}'). they are consi-
dered as basic quantities through guage invariant
quantities(not through field strengths).

In connection with this, Aharonov—Bohm have
pointed out some effects (particularly magnetic
effect) of potentials in quantum theory through
the double—slits experiments. In experiments
Aharonov—Bohm predict an effect upon electrons
passing outside a long solenoid. It is well
known that outside an infinitely long solenoid
the field strength is free and inside of it the
field is paralle] to the solenoid axis. but vector
potentials exist in all regions.

Thus the fact that there is the Aharonov—
Bohm effect in such a region where the field

strength is {ree but vector potentials exist does
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not imply that vector potentials play a role in
this case. Of course, a role appears as an in-
direct gauge invariant quantity.

But in local anantum theory. interaction of
electron with field strength happens at the point
where the electron exists. Therefore only non—
zero quantities correspond to the observable
physical effect on the electron.

Since there is no way in quantum theory to
describe the interaction of the electron with field
strengths only in terms of field quantities. it
seems that the potentials are basic quantity and

the quantum theory is nonlocal one.

II. Review of the Aharonov—Bohm
Effect

We are now in position to discuss the original
form of the Aharonov—Bohm effect itself. Con-
sider a particle of charge e passing above or
below a very long impenetrable solenoid as
shown in Figure I). In this arrangement the
slits are a few wavelengths wide and only slight-

ly divergent waves are used because the waves

travel some part of distance between the slits.

screen

Figure 1 The Anaronov —Bohm

interference pattern deflection

The electron de Broglie wave originating from
the source is split into two parts and is
coherently recombined to produce the interfer-

ence pattern on the screen.

If the solenoid is not inserted into this
arrangement, the interference pattern is exactly
described by the classical theory except the fact
that the electron de Broglie waves are at the
origin in quantum theory.

How different is the situation. when the sole-
noid is involved? Of course, the regions where
electron is passing above or below are inaccessi-
ble to the magnetic field; i.e. a field-free region.
Therefore the electron de Broglie waves are not
affected by Lorentz force, and according to the
classical theory there is no change in the in-
terference patteren on the screen.

A number of experiments. however, have

showed that the interference pattern is un-

changed but is shifted. This implies that in a
region where the field strength is free the poten
tial plays a role, producing the path difference
and the interference pattern is shifted. Also, ir
this case. the potential is the vector potential.

The path difference is calculated quantitative-
ly in terms of the WKB-method. The wave
function of the electron de Broglie waves are

expressed as

iS(L,t)
—

¥, 1)=vp exp —— (1)

N
where 2 is probability density and EACAY;
phase angle.

If one inserts this expression for the wave
function of the electron de Broglie waves into
the Schrédinger’'s wave equation, he gets the

equation

as(x,t)
=0

1
— s, P veOr—= (2)
Z2m at
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This is known as Hamilton~Jacob equation in
classical theory. where S(Rt) stands for Hamil-
ton’s principal function. Thus one has a semi.
classical interpretation of the phase of the wave
function : § times the phase is equal to Hamil-
ton’s principal function provided that § can be
_considered as a small quantity. when the
Hamiltonian is not a function of time. the
Hamiltonian's principal function S(%t) can be

written as follows.
S(x.t)=3()—Et (3)

where S(%) is time—independent function.
Inserting this equation into the equation(2)

and restricting the problem to one dimension,

the following solution of the Hamilton—Jacob

equation 1s gotten.
S0 = £ f*ax"Jam( £ —v(x)) ()

If initially the electron enters a slit with the
momentum P=.,/2mE (i.e. V(x)=0) the potential.
due to the solenoid. changes the momentum as
follows.

e
P —™* P +—Ax (5)
(o

and the formula (4) is rewritten in terms of the

changed momentum (5).

S(x) = t_fxdx'r_‘/ZmE +—iA7 (6)
¢

In 3-dimensional case this formulae is reex-

pressed

§(X—’):i‘f?[f3+ixj Nt n
C

where the upper limit 2 stands for the path

which electron de Broglie waves transverse
Thus the electron de Broglie waves passing
through the different paths are described in

terms of the wave functions

@2(2,00=p exp[i[SH(D—Et ]/ %}
U2, (2,0)=p expl i[S2,(D—Et /4

respectively where subscript '?1-‘?2 stands for the
path and time t is same for the two different
paths.

Therefore. the path difference due 1o the

potential is

I »> e .p2? +> d g
[Srz(f) —Sr, (X*)J/ﬁitE[JQTZA-dr - Jn

> e > -
Rear] =2 — g R-af (9)

where integration path is the closed curve which
encloses the solenoid.

This is just the result Ahsronov—Bohm pre-
dicts! Even if the potental A i1s changed by
guage transformation integral fﬁ\' di is

guage invariant. -

. Gauge Invariance and Locality of
the Aharonov—Bohm Effect.

The classical electromangnetism is described
by the four Maxwell's equation written in a

differential form.

4 1 o
TeB=dmp oxi=Tpo 2k

c c ot 20)
<-8=0 vxf?«{-—l—::—tg:o

When these equations are combined with the
Lorentz force equation and Newton's second law
of motion they completely described the classic-
al dynamics of interacting charged particles and
electromagnetic fields. As scalar potential & and
vector potential A are introduced, the Maxwell
equations (10) are rewritten as a smaller number

of second-order partial differential equations.

11
v2§+?§(v-i\’):~4np (11
; 1 922 1 9 4r
VIR- 5= S P ) =Z7
c® ot c 9ot C
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Though the four Maxwell equations are now
reduced to the set of two potential equations,
they are still coupled equations. The magnetic
induction is written in terms of the curl of

vector potential. therefore even though the gra-

dient of some scalar function is added the magne-

tic induction is left unchanged.

That is, under the transformation
> +, -+
A—A =A+TAN 12

field strength is unchanged.
Thus chosing the appropriate scalar function
A. one gets the following condition, ie. radia-

tion guage.
-+
v -A=0. 18)

Then the set of two potential equations is re-

written in the use of this radiation gauge.

Vzi =—4zp
2 ? 1 92.& 47 » 1 Qf (14)
VIA- 5 —5= -l =
c at c [« at .

It is well known that the electromagnetic
waves propagate with a finite velocity. But the
equations (14) imply that the scalar potential
propagates instantaneously everywhere in space.
and the vector potential propagates with a finite
velocity C. It is, however, not the potentials that
concern us.

Thus in classical theory the field strengths are
regarded as basic quantities and the potentials
as mathematical auxiliary quantities. In quantum
theory, this situation is changed. The Lorentz
force in classical theory is replaced by the
average force in semiclassical quantum theory

through the correspondence principle, i.e.

Fy=W|[-oV+ ev§—%\7x 819>

where V is the non—electrostatic potential, ®
scalar potential, B-oxA magnetic induction,
7 the velocity operator of the matter considered,
¥ the wave function of that matter.

There is a difference between formula (15) and
the classical Lorentz force (F=-oV+eod
~E¥ §)

c
function ¥ and this wave function ¥ is

The formula (15) involves wave

obtained by solving the Schrodinger's wave
equations, in turn the Schrodinger's equations

have a following Hamiltonian.
H=(F- =27 +V. 16)

Borrowing the Aharonov-Bohm's statements,
“because there is no way in quantum mechanics
to express the interaction of the matter with the
electromagnetic field in terms of field equations
the wave function entering into equation for the
average force therefore cannot, in general, be
known unless one first knows the potentials.”

The formula (16) corresponds to the trans-
formation

F—F- a7

o
n]>*

All observable quantities in quantum theory are
invariant under the guage transformation.
Hamiltonian (16). therefore. must be guage in-
variant.

Then, under the gauge transformation (12) how
does the wave function transform?

First, we construct an unitary representation

U
v-v' =u¥ (18)

and from the fact that Hamiltonian (16) is in-

variant under the guage transformation (12),

>
> e A
eA CV/\)U:P_GC_ a9)
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the unitary representation |) which satisfies this

condition (19) 1s

U= exp[ iﬁ"c/\ ] 2

and the transformed wave function is written

T’ = expl. iﬁ“c’\] v, 21

The untransformed wave function ¥ is. there-
fore. not gauge invariant. Using the parallel

displacement,

e
(1 A df 40 ]|y trer 2

the wave function which is gauge invariant is

constructed.
This procedute is obtained as follows. Cosider

some function of position ?:Q(?), When the

vector potential is free,
FE+AD =F(D+ (T F) - o 2y

L.
If the vector potential A is turned on.

ie
- —R&
hild

§'(r+dr>:§<:>+<v_%§x>§. & g

=§(?+dr*)—;?:-§ﬁ- of,

Thus we obtain

F =ew[—5 A-471F 25)
e .
The guage invariant wave function is them writ-
ten by
W=c><p[*—;—e Rea? ) (26
c .

For a finite displacement along the path C,

wqxp[—.;_j [ e Tal’s _ 2

It also be used in describing the electron de
Broglie wave because it differs only in phase
from the original wave function

The problem arises at this point. If the guan-
tum theory is local one, then this formulae (27)
1s used in a naive form and as a result, the
potentials (in this case. vector potential) are
regarded as basic quantities.

Alternatively if quantum theory is non—local.
the vector potential must be reexpressed in

terms of magnetic induction B through
wxB=w(w.A) A, 8)

Using the radiation gauge. the vector potential is

1 (< B) -df,

>, 5 ryx -dr,

A(r = {
rp 47:]———'?1 7] 29

Since at the right hand side of the equation (29)
the magnetic induction (i.e. field strength) only
appears, the interaction of the electrons with
field strength must be described non—locally and
the situation becomes, therefore, more difficult.

For a while, let us discuss the local theory. In
a local theory there is an assumption such as
idealization of space—time measurement in arbit-
rarily small regions, and the field functions are
continuous functions having the continuous para-

meter.

Therefore in a microscopic world it may seem
that a local theory is re—constructed in a diffe-
rent way. There is, however, no concrete evidence
of a discontinuity at small distances. Up to now
there is no violation of the above assumption
down to distance ‘ﬁ‘c/J§~ 10~ !5cm (where S is
the squared center—of—mass energy). Also as
required by Lorentz invariance and a micro-
causality, the velocity of the disturbance must
not exceed the velocity of light, and the field

functions relative to spacelike separated intervals
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commute, that is,

[($), §(D]1=0 for (x—y)2<0 a0

where parameter x. y is four vector and we used
the metric (1. —1.—1. —1). Another reason
which one needs the local theory is that there
exists no different satisfactory theory.

Even though there exists an alternative theory,
it must be approximated to the local theory in
large distance regions.

Thus one can use the local theory down to ~
107 "°cm distances and (in this regions quantum
theory is local one.)' one can conclude that the
potentials are basic quantities. Of course, even
though this is true in quantum theory, in classic-
al theory the field strengths are still basisc

quantities.
IV. Conciusion
In contrast with the classical theory, in which

field strengths play a fundamental role in de-

seribing the variety of nature, the potentials are

basic quantities in quantum theory.

The Aharonov—Bohm effect supports this fact
strongly. In quantum theory Hamiltonian, when
the potential exists, is expressed the formula
(16) and, this potential (in this case vector
potential) acts as an operator and changes the
eigenvalue of the Hamiltonian. Because we do
not know how to express the interaction of the
matter with electromagenetism solely in terms of
the field strengths. as seen the above discussion
we conclude that the potentials play a basie® role
in quantum theory.

Of course the potential can be expressed in
terms of the field strength. In this case theory
becomes the nonlocal theory. Though there are
some evidence supporting the nonlocal theory
(i.e. Bell's inequality). the local theory is still
the strong method describing the physical nhe-
nomena.

Therefore. as for as the local theory is core
we must regard the potential as the basic quanti-

ty in quantum theory.
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